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Abstract

The design of compliant mechanisms is crucial in several technologies and relies on the avail-
ability of solutions for nonlinear structural problems. One of these solutions is given and
experimentally validated in the present article for a compliant mechanism moving along a
smooth curved profile. In particular, a deformable elastic rod is held by two clamps, one at
each end. The first clamp is constrained to slide without friction along a curved profile, while
the second clamp moves in a straight line transmitting its motion through the elastic rod
to the first clamp. For this system it is shown that the clamp sliding on the profile imposes
nontrivial boundary conditions (derived via a variational and an asymptotic approach), which
strongly influence buckling and nonlinear structural behaviour. Investigation of this behaviour
shows that a compliant mechanism can be designed, which gives an almost neutral response in
compression. This behavior could easily be exploited to make a force limiting device. Finally
a proof-of-concept device was constructed and tested showing that the analyzed mechanical
system can be realized in practice and it behaves tightly to the model, so that it can now be
used in the design of machines that use compliant mechanisms.

Keywords: tensile buckling, constrained elastica, constraint’s curvature.

1 Introduction

Compliant mechanisms are going through a paradigm change. Where once they were part of
the fixtures and fittings of mechanisms they are becoming the mechanisms themselves. This is
especially true in nano- and micro- mechanics where joints, linkages and their associated bearings
are difficult to make and assemble. They are also important in bioinspired systems, as biolog-
ical systems are often composed of soft elements working over a large range of displacements.
Advances in this field are heavily reliant on the available solutions for the non linear behaviour
of structural elements as well as physical proof that the theoretical models can be realized in
practice. The purpose of the present article is to investigate, both theoretically and experimen-
tally, the planar elastica with a ‘non-standard constraint’ applied at one of its ends, namely, a
clamp that is constrained to follow a curved and frictionless profile. The influence of constraints
of this type on elastic rods has been recently highlighted by Zaccaria et al. (2011), showing that
a slider can introduce tensile buckling in an elastic system1, and by Bigoni et al. (2012, 2013),

∗Corresponding author. Phone: +39 0461 282507; E-mail: bigoni@ing.unitn.it; Fax: +39 0461 282599.
1Bifurcation for tensile loads was also addressed by Ziegler (1977), but a compressed element responsible of

buckling is present in his example, and by Gajewski and Palej (1974), as a result of a live load. Zyczkowski (1991)
concludes that under dead loading buckling is impossible when all structural elements are subject to tension.
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demonstrating the strong influence of constraint curvature on buckling (which, by ‘playing’ with
the sign of the curvature, may be turned from compressive to tensile) and postcritical behaviour.

To illustrate the effect of a ‘non-standard constraint’ on structural systems, let us consider
the two simple structures of length l shown in Fig. 1, both subjected to a distributed transverse
load of magnitude q and simply supported at the left end (the rods are assumed inextensible
and solved in the small deflection approximation). The difference between the two structures
lies in the constraint applied on their right end: figure A shows a clamp that is free to slide
along a vertical line while figure B shows a clamp that is constrained to follow a curve, which
for simplicity is circular with Rc = l/2. It can be appreciated from the diagrams of the bending
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Fig. 1: Two elastic structures (the rods have a length l and are subject to a vertical, distributed load q) differing
only in the curvature of the profile along which the clamp on the right end can slide (a vertical line on the left,
a circle of radius Rc = l/2 on the right) exhibit a completely different mechanical behaviour, so that, while the
structure on the left is equivalent to one half of a simply-supported beam, that on the right is equivalent to a
beam simply clamped on the right and free at the other end. ‘S.F.’ and ‘B.M.’ stand for ‘shear force’ and ‘bending
moment’, respectively.

moment (B.M.) and of the shear force (S.F.) shown in the figure that the two elastic solutions
are totally different, a fact that demonstrates the strong influence of the constraint’s curvature.

In order to derive the natural boundary condition that emerges from the presence of the
curved constraint, it suffices to write the total potential energy of the elastic system shown in
Fig. 1, expressed as a function of the transverse displacement v(z),

V(v) =
1

2
B

l∫
0

(
d2v(z)

dz2

)2

dz − q
l∫

0

v(z) dz, (1)

and to take variations (subscript ‘var’) of the equilibrium configuration (subscript ‘eq’) in the

Biezeno and Grammel (1955) fail to notice that one structure considered by them as an example of multiple
loadings displays tensile buckling, when subjected to a certain load. The example reported by Zaccaria et al.
(2011) shows that tensile buckling of a system in which all elements are subject to tension is possible under a dead
load. To the best of the authors’ knowledge, and excluding a situation analyzed by Timoshenko and Gere (1936),
the effect of constraint curvature on buckling load was only considered by Bigoni et al. (2012, 2013).
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form
v(z) = veq(z) + ε vvar(z), (2)

subject to the following kinematic boundary conditions at the extremities of the rod,

veq(0) = 0,
dveq(z)

dz

∣∣∣∣
z=l

+ χ veq(l) = 0 and vvar(0) = 0,
dvvar(z)

dz

∣∣∣∣
z=l

+ χ vvar(l) = 0, (3)

where χ is the signed curvature of the constraint, assumed to be constant. The first variation of
the functional (1) is readily obtained as

δεV(v) =

l∫
0

[
B
d4veq(z)

dz4
− q
]
vvar(z) dz +B

d2veq(z)

dz2
dvvar(z)

dz

∣∣∣∣z=l
z=0

−Bd
3veq(z)

dz3
vvar(z)

∣∣∣∣z=l
z=0

, (4)

such that, taking into account the restrictions imposed by Eqs. (3), the vanishing of δεV(v) for any
admissible displacement field vvar(z) leads to the differential equation of the linearized elastica
(not reported for brevity) and to the non-trivial boundary condition at the right end of the
structure, namely,

d2v(z)

dz2

∣∣∣∣
z=l

+
1

χ

d3v(z)

dz3

∣∣∣∣
z=l

= 0, or M(l) +
1

χ
T (l) = 0, (5)

so that the force T (l), tangential to the moving clamp (and coincident now with the shear force
transmitted by the elastic rod2), is in general not null, but related to the bending moment M(l)
through the curvature χ of the profile along which the clamp may slide. The fact that a reaction
is present, tangential to a perfectly smooth constraint is an unexpected and noticeable effect
sharing similarities with the Eshelby-like force discovered by Bigoni et al. (2014 a; 2014 b; 2015),
see also Bosi et al.(2014). This reaction (which is completely unexpected at first glance) passed
unnoticed by Bigoni et al. (2012) (because they did not experiment a sliding clamp, but only
a sliding pin), so that it is the purpose of this article to reconsider the sliding clamp condition,
providing for this constraint a full theoretical and experimental validation.

The scope of the present study is: (i.) to generalize the boundary condition at the curved
constraint, that is Eq. (5), showing that it holds true for a profile with variable curvature and
when the rod is subject to large displacements, (ii.) to solve the nonlinear equations of the elastica
for a rod with a clamped end movable on a circular constraint, and (iii.) to experimentally show,
through the realization of a proof-of-concept device, that a sliding clamp can be realized in
practice to tightly follow the theory. In particular, the presented experiments refer to the case of
a rectilinear elastic rod with one clamped end constrained to slide along a bi-circular ‘S-shaped’
profile, the same system considered by Bigoni et al. (2012), but from a purely theoretical point of
view and with a no-shear assumption at the sliding profile, which is correct only for a movable pin,
as shown in the present study. The influence of the constraint’s curvature is shown both on the
critical loads and on the post-critical behaviour, obtained by direct integration of the nonlinear
equation of the elastica. An interesting finding is that the postcritical response in compression
is ‘almost neutral’, in the sense that the load changes very little with increasing displacement of
the clamped end, a feature that could be exploited in the realization of a force limiter device,
which could for instance be employed in the design of shock absorbers or security belts.

2 The elastica with a sliding clamp at one end: derivation of boundary conditions

The boundary condition (5), relating shear force, bending moment and curvature at the sliding
constraint can be obtained both with a variational approach and with an asymptotic approach.

2This coincidence is not verified if the clamp is connected to the end of the elastic rod through an elastic hinge.
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In fact, the clamp can be replaced by two rollers, close to each other and joined by a rigid bar, in
the limit when the length of the bar (and therefore the distance between the two rollers) tends
to zero. The boundary condition naturally emerges in the former approach, while the latter
represents the key for applications, since it will be experimentally proven that a moving clamp
can be realized with two rollers rigidly joined at a small distance from each other.

2.1 Variational approach

Consider an elastic inextensible rod of length l and bending stiffness B that is clamped at its left
end, while the other end is constrained by another clamp which is free to slide along a frictionless
and curved profile parametrically described through ξ as xc(ξ), see Fig. 2 for a sketch of the
structure.
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Fig. 2: The planar elastica problem of an inextensible rod of length l and bending stiffness B that is clamped at
its left end, and constrained with a clamp at the other end, free of sliding without friction along a curved profile.
Note that there is a jump in the curvature of the profile at ξ = 0, where the tangent to the constraint is vertical.

The equations governing the planar elastica problem sketched in Fig. 2 can be derived by
means of a variational approach. In particular, the total potential energy V(θ, ξ) of the system is

V(θ, ξ) =
1

2
B

l∫
0

(
dθ(s)

ds

)2

ds− F

 l∫
0

cos θ(s) ds− xc1(ξ)

+ λ

 l∫
0

sin θ(s) ds− xc2(ξ)

 , (6)

in which s denotes the arc-length of the rod and λ is a Lagrange multiplier, enforcing a kinematic
compatibility condition at the right end of the system,

x2(l) =

l∫
0

sin θ(s) ds = xc2(ξ). (7)

Variations (subscript ‘var’) from the equilibrium configuration (subscript ‘eq’) are considered in
the form

θ(s, ε) = θeq(s) + ε θvar(s), ξ(ε) = ξeq + ε ξvar, (8)

subject to the following restrictions at the clamp on the left end of the structure

θeq(0) = 0, θvar(0) = 0. (9)

A substitution of Eq. (8) into Eq. (6) yields, through integration by parts and taking into
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account the boundary conditions of Eq. (9), the first variation of the functional V(θ, ξ)

δεV(θ, ξ) =

l∫
0

[
−B d2θeq(s)

ds2
+ F sin θeq(s) + λ cos θeq(s)

]
θvar(s) ds+ (10)

+B θvar(l)
dθeq(s)

ds

∣∣∣∣
s=l

+

[
F
dxc1(ξ)

dξ

∣∣∣∣
ξ=ξeq

− λ dx
c
2(ξ)

dξ

∣∣∣∣
ξ=ξeq

]
ξvar. (11)

Upon noting that the signed curvature of the constraint can be expressed as

χ(ξeq) = −θvar(l)
ξvar

, (12)

and that
dxc1(ξ)

dξ

∣∣∣∣
ξ=ξeq

= − sin θeq(l),
dxc2(ξ)

dξ

∣∣∣∣
ξ=ξeq

= cos θeq(l), (13)

the vanishing of the first variation δεV(θ, ξ) for every admissible field θvar(s) yields the differential
equation of the elastica (Love, 1927; Audoly and Pomeau, 2010)

B
d2θeq(s)

ds2
− F sin θeq(s)− λ cos θeq(s) = 0, (14)

where now the Lagrange multiplier can be identified with the vertical reaction V acting at the left
end of the rod (positive when directed upwards along the x2-axis), and an equation expressing
the rotational equilibrium of the sliding clamp moving along the curved profile

B
dθeq(s)

ds

∣∣∣∣
s=l

− 1

χ(ξeq)

[
F
dxc1(ξ)

dξ

∣∣∣∣
ξ=ξeq

− V dx
c
2(ξ)

dξ

∣∣∣∣
ξ=ξeq

]
= 0, (15)

which, using Eqs. (13), becomes

B
dθeq(s)

ds

∣∣∣∣
s=l

+
1

χ(ξeq)
[F sin θeq(l) + V cos θeq(l)] = 0, (16)

a condition showing that the bending moment and the shear force at the moving clamp relates
as through Eq. (5), but now χ(ξeq) is the curvature of the profile where the clamp is located.

2.2 Asymptotic approach

Consider a generic profile of co-ordinates xc(ξ), parametrized by the arc-length ξ, along which
two rollers, joined by a rigid bar, may freely slide without friction. It is assumed that an axial
force N , a shear force T , and a bending moment M are applied on the rigid bar (corresponding to
the internal actions transmitted by the elastic rod), together with the two reactions transmitted
by the rollers, R1 and R2, acting along the normal n to the profile, see Fig. 3.

Initially, the rigid bar is considered of finite length, but eventually this length will be shrunk
to zero. This rigid bar is characterized by the vector x̂(ξ, γ) = xc(ξ)− xc(−γ ξ), in which γ is a
positive scalar, so that its equilibrium requires

R1
x̂(ξ, γ)

|x̂(ξ, γ)|
· t(−γ ξ) +R2

x̂(ξ, γ)

|x̂(ξ, γ)|
· t(ξ) = N,

R1
x̂(ξ, γ)

|x̂(ξ, γ)|
·n(−γ ξ) +R2

x̂(ξ, γ)

|x̂(ξ, γ)|
· n(ξ) = T,

h =
M

T
,

(17)
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Fig. 3: An elastic rod transmits the internal actions N , T , and M to a rigid bar connecting two rollers that are
subject to the reactions R1 and R2 from a rigid and perfectly smooth profile of co-ordinates xc(ξ).

where the unit vector tangent to the profile is denoted by t, whereas h is the distance between
the intersection point of the two normals, C , and the rigid bar. Notice that |x̂(ξ, γ)| corresponds
to the length of the bar, while solution of Eq. (17) immediately yields explicit formulae for the
two reactions R1 and R2 between the rollers and the curved profile

R1 =
|x̂(ξ, γ)|[N x̂(ξ, γ) · n(ξ)− T x̂(ξ, γ) · t(ξ)]

[x̂(ξ, γ) · n(ξ)][x̂(ξ, γ) · t(−γ ξ)]− [x̂(ξ, γ) ·n(−γ ξ)][x̂(ξ, γ) · t(ξ)]
,

R2 =
|x̂(ξ, γ)|[N x̂(ξ, γ) ·n(−γ ξ)− T x̂(ξ, γ) · t(−γ ξ)]

[x̂(ξ, γ) · n(−γ ξ)][x̂(ξ, γ) · t(ξ)]− [x̂(ξ, γ) ·n(ξ)][x̂(ξ, γ) · t(−γ ξ)]
.

(18)

To proceed, we notice from Fig. 3 that xc(−γ ξ) + d1 n(−γ ξ) = xc(ξ) + d2 n(ξ), such that,
taking the scalar product with t(ξ), an expression is obtained for the distance d1, namely

d1 =
x̂(ξ, γ) · t(ξ)

n(−γ ξ) · t(ξ)
, (19)

and, in turn, for the distance h that relates bending moment M and shear force T ,

h = d1
x̂(ξ, γ)

|x̂(ξ, γ)|
· t(−γ ξ). (20)

Finally, in the limit of vanishing distance |x̂(ξ, γ)| the two reactions R1 and R2 blow up to
infinity, whereas the distance h converges to

lim
ξ→0

h =
1

|t′(0)|
, (21)

where a prime denotes differentiation with respect to ξ. Noting that |t′(0)| corresponds to the
curvature of the profile evaluated at ξ = 0, we recover with the asymptotic analysis Eq. (5) and
Eq. (16) relating bending moment and shear force.

In an experimental setting, a sliding clamp can be realized with two rollers joined with a
short and rigid bar. In this case, the distance h may be calculated through Eq. (20), so that the
condition (17)3 provides an estimate of the real boundary condition obtained in the experiment.
For the experimental tests that will be described later, two rollers were joined at a distance of
30 mm and these slide on a circle of radius 150 mm. Therefore, the real boundary condition is
M/T = 149.2 mm, to be compared with the ideal boundary condition of M/T = 150 mm, showing
that the behaviour of the physical model of the clamp follows very closely the mathematical model.

6



Published in International Journal of Solids and Structures (2015), in press
doi: http://dx.doi.org/10.1016/j.ijsolstr.2015.05.004

3 Bifurcation and post-critical behaviour of an elastic rod with a sliding clamp

An inextensible elastic rod, rectilinear in the undeformed configuration, has a moving clamp on its
right end, constrained to slide without friction along an ‘S-shaped’ bi-circular profile, Fig. 4. The
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Fig. 4: Bifurcation and post-bifurcation problem for an inextensible elastic rod with two moving clamps at the
ends: one can slide horizontally at the left end, while the other slides along a frictionless, bi-circular profile. The
trivial equilibrium configuration is sketched in gray.

straight configuration is the trivial equilibrium solution, in which the structure is subject to an
axial tensile (positive) or compressive (negative) dead force F . The buckling and the postcritical
behavior of the structure is examined in detail below.

3.1 Bifurcation loads

Denoting by v(z) the transverse displacement, the linearized differential equation governing equi-
librium of an elastic rod subject to an axial force F is

d4v(z)

dz4
− α2 sgn(F )

d2v(z)

dz2
= 0, (22)

where α2 = |F |/B and ‘sgn’ indicates the sign function. The boundary conditions at the two
ends of the rod read

v(0) = 0,
dv(z)

dz

∣∣∣∣
z=0

= 0, − d3v(z)

dz3

∣∣∣∣
z=l

= χ
d2v(z)

dz2

∣∣∣∣
z=l

,
dv(z)

dz

∣∣∣∣
z=l

= −χ v(l), (23)

involving the signed curvature χ = ±1/Rc of the circle. Note that Bigoni et al. (2012) have
referred to a rotational spring of stiffness kr at the right end of the rod, but they did not consider
a shear force acting on that end. Consideration of the elastic hinge connecting the rod to the
moving clamp implies that (5)1 and (16) do not hold, although (5)2 and (15) still continue to
hold, so that the Eq. (15)2 of Bigoni et al. (2012) has to be modified by multiplying the term on
the right hand side by [−1− sgn(F )krχ̂/(Blα

2)].
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A substitution of the general solution of Eq. (22) into the boundary conditions (23) yields the
condition for the critical loads3, that is

αl sgn(F ) cosh(
√

sgn(F )αl) +
√

sgn(F )
[
− 1 + sgn(F )(1 + χ̂)

α2l2

χ̂2

]
sinh(

√
sgn(F )αl) = 0. (24)

Buckling loads, made dimensionless through multiplication by l2/(π2B), and effective length
factors l0/l = π/l

√
B/Fcr are reported in Fig. 5 and in Tables 1 and 2 as functions of the dimen-

sionless signed curvature of the constraint χ̂ = lχ. Note that this figure and the tables replace
data reported by Bigoni et al. (2012) in their Fig. 9 (right) and Table 2, which refer to a zero-
shear force assumption, which has been proved to be incorrect in the present article. The correct
results reported in Fig. 5 show a symmetry of the tensile buckling loads about χ̂ = 2, which was
absent with the incorrect assumption of zero-shear force.
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Fig. 5: Dimensionless bifurcation load Fcr (a negative sign denotes compression), reported for the first five modes,
of the structure sketched in the inset as a function of the signed dimensionless curvature χ̂ of the circular profile.

χ̂−1 = −Rc/l -∞ -2 -1 -0.75 -0.5 -0.25 negative curvature

l0
l

- - - 0.784 1.309 0.784 tensile buckling

1 0.956 0.699 0.581 0.561 0.581 compressive buckling

Fcrl
2

π2B

- - + ∞ +1.625 +0.583 +1.625 tensile buckling

-1 -1.094 -2.046 -2.959 -3.174 -2.959 compressive buckling

Table 1: Dimensionless buckling loads Fcrl
2/(π2B) and effective length factors l0/l for negative curvature.

From the reported results, we can note that tensile buckling is always excluded for positive
curvature, while this becomes possible for negative.

3In the case of an elastic hinge connecting the rod to the moving clamp considered by Bigoni et al. (2012), their
Eq. (17) has to be modified by replacing the quantity multiplying the rotational spring stiffness kr with the term

at the left hand side of Eq. (24) multiplied by |̂χ|sgn(F )/(Blα2).
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χ̂−1 = Rc/l +0.25 +0.5 +0.75 +1 +2 +∞ positive curvature

l0
l

- - - - - - tensile buckling

0.838 0.904 0.937 0.956 0.984 1 compressive buckling

Fcrl
2

π2B

- - - - - - tensile buckling

-1.424 -1.223 -1.138 -1.094 -1.033 -1 compressive buckling

Table 2: Dimensionless buckling loads Fcrl
2/(π2B) and effective length factors l0/l for positive curvature.

3.2 The elastica for a ‘S-shaped’ bi-circular profile

Write R as the resultant force acting on the rod and, in turn, write φ as its inclination with
respect to the horizontal axis x1, see Fig. 4. For the solution of the problem, it is now expedient
to introduce the following change of variables, namely s = l − ŝ and θ(s) = φ − θ̂(ŝ), such that
the non-linear equation of the elastica (14) now becomes

d2θ̂(ŝ)

dŝ2
− R

B
sin θ̂(ŝ) = 0, (25)

where for simplicity the subscript ‘eq ’ has been dropped. Notice that Eq. (25) corresponds to the
elastica of a inextensible rod written in a local reference system (x̂1, x̂2), such that the angle θ̂(ŝ)
measures the rotation of the normal to the rod with respect to the axis x̂1 at a distance ŝ from
the sliding clamp, see Fig. 4, in which the local reference system has also been reported. The
elastic line problem can now be solved upon noting that:

i.) a condition of kinematic compatibility can be obtained by observing from Fig. 4 that the
coordinates of the elastica evaluated at ŝ = l, namely, x̂1(l) and x̂2(l), are related to the two
angles φ and ψ reported in the figure, and to the radius Rc of the constraint via

[x̂1(l)∓Rc cosψ] tanφ∓Rc sinψ − x̂2(l) = 0, (26)

where φ and ψ are assumed positive as shown in the figure. Note that in Eq. (26) the upper
(lower) sign holds for the case of the sliding clamp lying on the left (right) half-circle;

ii.) the curved constraint transmits to the rod a bending moment M and a force R, parallel to
x̂1 and assumed positive when opposite to the direction of that axis, so that for 0 ≤ φ < π/2
(π/2 < φ ≤ π) this corresponds to a positive tensile (negative compressive) dead force F
applied to the structure defined by

F = R cosφ; (27)

iii.) with the symbols introduced in Fig. 4, the following condition holds between the angle θ̂
evaluated at ŝ = l and the angle φ

θ̂(l) = φ, (28)

and similarly, the following condition holds between the angle θ̂ evaluated at ŝ = 0 and the
angle ψ

θ̂(0) = −ψ; (29)

iv.) as demonstrated in Section 2, equilibrium of the constraint sliding on the circular profile of
radius Rc requires that

M = Rc |R| sinψ, (30)
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so that Eqs. (29)-(30) immediately provide the boundary condition

θ̂(0) = − arcsin

(
B

Rc |R|
dθ̂(ŝ)

dŝ

∣∣∣∣
ŝ=0

)
. (31)

Integration of Eq. (25) from 0 to ŝ, after multiplication by dθ̂(ŝ)/dŝ, leads to(
dθ̂(ŝ)

dŝ

)2

= 2 α̃2

[
2

k2
− 1− sgn(R) cos θ̂(ŝ)

]
, (32)

where α̃2 = |R|/B and

k2 =
4α̃2

(Rc |R| sinψ/B)2 + 2α̃2
[
sgn(R) cos θ̂(0) + 1

] , (33)

in which Eq. (30) has been used to express the signed curvature of the rod at ŝ = 0. The
introduction of the change of variable

β(ŝ) = [θ̂(ŝ)−H(R)π]/2, (34)

where H denotes the Heaviside step function, allows to re-write Eq. (32) as(
dβ(ŝ)

dŝ

)2

=
α̃2

k2
(
1− k2 sin2 β(ŝ)

)
, (35)

such that a second change of variable u = ŝ α̃/k yields

dβ(u)

du
= ±

√
1− k2 sin2 β(u) . (36)

Restricting for conciseness the treatment to the case ‘+’, Eq. (36) provides the following
solution for β(u),

β(u) = am [u+ F [β(0), k] , k] , (37)

where am and F are the Jacobi elliptic function amplitude and the incomplete elliptic integral of
the first kind of modulus k, respectively (Byrd and Friedman, 1971). Keeping now into account
that dx̂1/dŝ = cos θ̂(ŝ) and that dx̂2/dŝ = sin θ̂(ŝ), an integration provides the two coordinates
x̂1 and x̂2 of the elastica expressed in terms of the arc-length u, namely

x̂1(u) = sgn(R)
2

kα̃
{(1− k2/2)u+ E [β(0), k]− E [am [u+ F [β(0), k] , k] , k]},

x̂2(u) = sgn(R)
2

kα̃
{dn [u+ F [β(0), k] , k]− dn [F [β(0), k] , k]},

(38)

in which the constants of integration are chosen so that x̂1 and x̂2 vanish at ŝ = 0. In Eqs. (38)
dn is the Jacobi elliptic function delta-amplitude of modulus k, while E is the incomplete elliptic
integral of the second kind (Byrd and Friedman, 1971).

The horizontal displacement δ of the clamp on the left-hand side of the structure (assumed
positive for a lengthening of the system) is given in the form

δ =
x̂1(l)∓Rc cosψ

cosφ
±Rc − l, (39)

where, similarly to Eq. (26), the upper (lower) sign holds for the case of the sliding clamp lying
on the left (right) half-circle.

On the basis of the equations reported above, the axial dead load F can be computed as a
function of the end displacement δ through the following steps:

10



Published in International Journal of Solids and Structures (2015), in press
doi: http://dx.doi.org/10.1016/j.ijsolstr.2015.05.004

i.) a value is fixed for the signed curvature of the rod at the sliding clamp, i.e. dθ̂(ŝ)/dŝ|ŝ=0,
such that the modulus k can be expressed using Eq. (31) as a function of the unknown R;

ii.) consequently, the expressions (38) for the coordinates of the elastica and Eq. (37) become
functions of R only, when evaluated at ŝ = l;

iii.) the angle φ is provided by Eq. (28), so that the kinematic compatibility condition (26)
becomes a nonlinear equation in the variable R, which can be numerically solved (we have
used the function FindRoot of MathematicaR© 6.0);

iv.) once R is numerically determined, the external dead load F and the displacement δ can be
obtained from Eq. (27) and Eq. (39), respectively.

An example of integration of the elastica is reported together with experimental results in
the next Section, see Fig. 7 for a detailed comparison. In conclusion, notice that the present
treatment remains almost unchanged when the sliding clamp is replaced with a pin equipped
with a rotational spring of stiffness kr. This constraint was analyzed by Bigoni et al. (2012)
under the incorrect zero-shear assumption and simply requires the replacement of the boundary
condition (29) with

θ̂(0) =
M

kr
− ψ, (40)

such that in this case Eq. (31) becomes

θ̂(0) =
M

kr
− arcsin

(
B

Rc |R|
dθ̂(ŝ)

dŝ

∣∣∣∣
ŝ=0

)
. (41)

4 The realization and testing of the proof-of-concept compliant mechanism

The compliant mechanism sketched in Fig. 4 was designed and constructed as follows. A sliding
clamp was realized with two roller bearings placed at a distance of 30 mm to each other, free to
slide along a bi-circular slot in a 2mm steel plate. The elastic rod was made up of two parallel,

Sliding clamp

Elastic rod

S-shaped constraint

Fig. 6: A side view of the experimental set-up for the buckling and post-buckling behaviour of an elastic rod with
a movable clamp on its right end, see the model sketched in Fig. 4.

600 mm long polycarbonate strips with a rectangular cross section of 3 mm × 25 mm each, for
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an overall bending stiffness B ' 265 kN mm2. The structure was loaded at a speed of 1 mm/s by
imposing at one end a horizontal displacement using a Midi 10 electromechanical testing machine
(10 kN maximum force, from Messphysik Materials Testing). In order to prevent the weight of
the structure influencing its static properties, the testing machine was turned into a horizontal
position and the movable clamp was supported with an almost frictionless bearing, see the inset
of Fig. 6. Loads and displacements were measured with a MT 104 load cell (0.5 kN maximum
load, from Mettler-Toledo) and a potentiometric displacement transducer LTM-900-S IP65 (from
Gefran). Furthermore, an IEPE 333B50 accelerometer (from PCB Piezotronics Inc.) was attached
at one end of the structure to both monitor the vibrations during the test (which should remain
sufficiently small) and precisely detect the instant of buckling. Data were acquired with a NI
CompactDAQ system interfaced with Labview 8.5.1 (National Instruments). The experiments
were performed at the ‘Instabilities Lab’ of the University of Trento. Fig. 6 shows a photo of the
experimental setup, whereas additional material with movies of the experiments is provided in
the electronic supplementary material and can be found at http://ssmg.unitn.it/.
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Fig. 7: The postcritical behaviour of the compliant mechanism sketched in Fig. 4, corresponding to the first mode
under tensile and compressive loads. In particular, the applied axial load F is shown versus the end displacement
of the system δ. Note the flat, ‘almost neutral’ postcritical response in compression. The theoretical solution
(reported dashed) has been calculated with Eq. (26), through steps (i.)-(iv.).

Results of tension/compression experiments are reported in Figs. 7, 8, and 9. In particular, the
applied load F versus end displacement δ relation is shown in Fig. 7. Here, beside the remarkable
agreement with the theoretical results (reported with a dashed line), we may note that the
structure stiffens during the postcritical behaviour in tension, but displays an ‘almost neutral’
behaviour in compression. With ‘almost neutral’ it is meant that the external load increases very
weakly during compression, so that it remains almost constant while the displacement increases.
For this reason, the mechanical system is very stiff up to the buckling load in compression, but
the load does not vary after this even if the displacement progresses by a large amount. We can
therefore notice that the compliant system operates as a force limiter.

Deformed shapes of the elastica (photos taken during tension and compression) at different
loadings are reported in Fig. 8, while a comparison with theoretical results, denoted with a dashed
line, is shown in Fig. 9. Note the large displacements regime in which the compliant, elastic system
operates and the excellent agreement between theory and experiments.
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30° 90°

120°90°

B)A) C) D)

Fig. 8: The deformed elastica during a compression (A and B) and a tension (C and D) test performed on the
structure sketched in Fig. 4.

60°

60°

A) B)

Fig. 9: The deformed shape predicted by the elastica (yellow/dashed line) superimposed on the experimental
deformed shapes of the structure (red/solid line). Case (A) refers to compression, while (B) to tension.

Conclusions

A proof-of-concept compliant mechanism has been designed, constructed and tested, in which an
elastic rod is constrained at one end with a clamp sliding along a curved and frictionless profile
and loaded at the other end. The analyzed constraint introduces nontrivial boundary conditions
that strongly affects the elastica, which has been explicitly solved for the mechanical system
investigated. Experiments on this system have shown a remarkable agreement with modelling
and have opened the possibility of realizing an almost neutral mechanical device, that could be
employed as a force limiter.
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