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Abstract

Using an analytical solution of the Euler’s Elastica, we stumbled upon peculiar shapes of a cantilever beam

subject to a large value of shear follower force at the free end. Intrigued by whether such shapes existed or not, we

set out to realise an experimental apparatus to validate our predictions. Attaining such system, in reality, is not at

all a trivial task. Indeed, it has represented an experimental challenge for decades, due to the emergence of unstable

configurations. After various attempts, we were finally able to conceive and realise a device capable of generating a

transverse follower force to the beam via air-thrust. We compared the measurement of the forces and the deformation

of the beam obtained experimentally with the analytical solution of the Euler’s Elastica in dimensionless form. Since

the experiments are quasi-static, the aerodynamic effect induced by the air flow are negligible; this is confirmed by the

agreement between the experimental results and both theoretical and numerical predictions. During the experiments,

we observed a high susceptibility to perturbations around a dimensionless load of 41.15. We used finite element

simulations with an explicit time integration scheme to carry out a stability analysis. Our analysis confirmed the

appearance of an unstable configuration for a load of 40.5. Therefore, by carefully tuning the apparatus, we could

reach load values higher than the unstable load up to around 120. For such levels of forces, the solution of the Elastica

prescribes hook-like shapes that we show experimentally in this paper. These results can find several applications, for

instance, the design of soft-actuators, the realisation of more efficient drilling pipes for underwater, or underground,

well or the design of biomedical equipment, such as catheters.
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1. Introduction

Follower forces are a kind of non-conservative force whose direction depends on the deformation of the structure.

Examples of follower forces in engineering are, for instance, the wind loading, the propulsive force of a rocket or
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the thrust induced by water flow on a garden hose. Extensive literature is available for tangential follower forces,

although their existence is still the centre of an animose controversy (Elishakoff, 2005), and their practical realisation

challenged numerous researchers over the years. It is not our intent to participate in this debate; for the sake of

this paper, we consider follower forces as useful abstractions for a variety of physical phenomena and engineering

applications. Examples not just include structural mechanics, but cover rotordynamics and gyrodynamics (Samantaray

et al., 2008), robotics and automatic control (Kooijman et al., 2011), aeroelasticity (Pigolotti et al., 2017), fluid-

structure interactions (Mandre and Mahadevan, 2009), smart materials (Karami and Inman, 2011), biomechanics

(Aoi et al., 2013), hydrodynamic peeling (Salussolia et al., 2020), (Rohlmann et al., 2009), cytoskeletal dynamics

(Bayly and Dutcher, 2016), molecular motors (De Canio et al., 2017) and even astrophysics (Chandrasekhar, 1984)

and geophysics (Kirillov, 2017). Follower forces fall under the more general umbrella of circulatory forces (Kirillov,

2013; Berry and Shukla, 2015, 2016). Even though only in recent years researchers framed follower forces into a more

general and modern mathematical framework, early theoretical research on follower forces dates back to 1950. The

most famous works include the Pflüger column (Pflüger, 1950; Pfluger, 1955; Tommasini et al., 2016; Bigoni et al.,

2018b), the Ziegler paradox (Ziegler, 1952, 1956; Bottema, 1956; Ziegler, 1977; Bigoni et al., 2018a), the Beck’s

column (Beck, 1952), the Reut’s column problem (Reut, 1939; Bigoni and Misseroni, 2020), and the first monography

on the stability of non-conservative forces due to Bolotin (Bolotin, 1963). One of the most challenging issues related

to the framework of follower forces was their actual realisation. Several researchers tried several attempts to realise

follower forces experimentally through different methods. For instance, (Herrmann et al., 1966) and (Wood et al.,

1969) used fluid flowing from a nozzle. The experimental setup proposed by (Herrmann et al., 1966) was used

mainly to test mechanical systems made up of rigid bars (not of complaint elements), namely with a finite number

of degrees of freedom, suspended with some elastic springs. On the contrary, the setup by (Wood et al., 1969) was

proposed to test flexible columns subject to tangential follower forces, but a huge nozzle box was mounted at the

top of the beam. Instead, (Sugiyama et al., 1995, 1999, 2000) used a solid motor rocket to induce follower forces

on structures. Still, the non-negligible mass of the motor and the very short duration of the experiments made this

method very complicated to be used. As correctly pointed out by Elishakoff in 2005 (Elishakoff, 2005), none of the

methods correctly realised a tangential follower force as postulated in the Ziegler column problem. A significant

breakthrough was achieved in 2011 by (Bigoni and Noselli, 2011), who designed and tested a device capable of

realising a follower tangential force exploiting dry friction. The idea consists of mounting a freely rotating wheel at

the top of the beam constrained to slide against a moving surface. In this paper, instead, we present the experimental

realisation of a cantilevered rod under large shear follower forces at the free tip (Fig. 1a). The problem is very

complicated as the investigation of the hook-like shape of the Elastica produced by the orthogonal follower force

requires that the angle included between the applied force vector and the axis of the unformed configuration ∈ [−π, π].

We realised a setup that provided an ”approximate” follower force to the beam via air-thrust, as the experimental setup

proposed by (Bigoni and Noselli, 2011) cannot be used. Being aware that this method introduces some complication

in the modelling, we carefully tuned the pressure of the air flow to reduce as much as possible the spurious effects
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associated with the fluid/structure interaction. We have validated the experimental apparatus by estimating most of

the discrepancies between the theoretical model and the experiments. Among these the main are i) friction between

the beam and the substrate, ii) frictional dissipation along the tube, iii) sudden changes in flow area, iv) stiffening of

the deformable tube due to the internal air pressure. By contrast to the Herrmann setup, we have been able to avoid

the presence of the nozzle, to lower the required air pressure to deform the mechanical system and to remove the two

suspending cables that can change the deformed Elastica dramatically. To assess the goodness of the experimental

setup, we compared the deformation with an analytical solution of the Elastica. The excellent agreement between the

experimental results and both theoretical and numerical predictions suggests that, in this specific kind of experiments,

the provided orthogonal force is an acceptable approximation of a follower force. Even though analytical solutions

already exist (Batista, 2014), here we provide a reformulation of the Elastica in terms of the curvatures (Barbieri,

2020). This reformulation has one significant advantage. The phase-portrait of this equation leads to discover the

spatial periodicity of the solution that explains the loop-like appearance of its shapes. Multiple loops are known to

appear in the Elastica with fixed forces (Bigoni, 2012): we show in this paper how similar shapes emerge mutatis

mutandi also for rods loaded by follower forces. Also, we performed Finite Element (FE) simulations to capture the

instability onset. The use of FE is necessary since systems loaded by follower forces do not admit a potential of the

type Strain Energy-External Work (Berry and Shukla, 2016; Bigoni, 2019) as follower forces are non-conservative.

The external work done by such a kind of forces is path-dependent and a non-zero work can be extracted in a closed

path, as shown in Fig. 1(b). Thus, a stability analysis based on the study of the second variation of the Lagrangian

cannot be used. Although the experimental setup presented in this article could be further improved, the observed

outcomes can find application in several fields. For instance, these results can play a crucial role in the description

and in the understanding of pressure-fed compliant mechanisms (e.g. in the design of soft-actuators). To increase

the positioning precision or to achieve more complicated shapes, a pneumatically pressurized soft robot arm could

be realized with one or more small voids that open and close on demand. Such a mechanism could be exploited to

compensate for the dynamic effect that can reduce repeatability and accuracy of movements. Moreover, hook-shaped

configurations could permit to fold/unfold a compliant mechanism and thus penetrate narrow spaces. The present

experimental setup could be used to realize more efficient flexible devices and better understand, for instance, the

deformation mechanism.

2. Material and Methods

2.1. Experimental apparatus

The experimental setup, shown in Fig. 1(c), was specifically designed to apply a tunable transverse follower force

at the top of the beam. The actual realisation of a follower force acting on a structure has always been considered a very

complicated problem. A straightforward way to provide this kind of force to a system is to exploit the reaction force

generated by a fluid (air) flowing from a small circular void orthogonal to the beam axes as reported in the inset (a) of
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Fig. 1b. The void (diameter dout=0.8 mm) was realised by a 0.8 mm in diameter biopsy punch. A very flexible silicone

tube of length Ltube=170 mm and weight Ptube=13.8 mN, inner and outer diameters dint=1.5 mm and dext=2.5 mm,

respectively, is used in the experiments. The clamped end of the flexible tube is fixed to a rigid metal tube where the

air that produces the shear force flows. During the experiments, the applied shear follower force is linearly increased

by changing the air flow immediately upstream of the flexible tube. The air pressure, and accordingly the end-thrust,

was raised through a solenoid valve (pressure gauge, internal diameter din=8mm) connected to a NI CompactRio

acquisition system. A LabVIEW algorithm permitted to adjusts the air flow to a wanted value via a closed-loop

control. The pressure rate was always kept under 0.04 bar/s, and to overcome instabilities, we had to carefully reduce

and tune it manually. An air condensate filter was mounted before the pressure gauge for draining condensate and

for cleaning the air. The whole apparatus, arranged horizontally to prevent the gravitational effect, is mounted on

an optical table (Nexus from ThorLabs). A Teflon (PTFE) sheet was also used to reduce the friction between the

experimental support and the flexible beam. A friction coefficient (µ f ) Silicon on PTFE (Teflon) surface of about 0.48

± 0.05 has been estimated via specific frictional experiments. Five preliminary tension tests were performed on the

silicone tube to determine its mechanical properties. A mean value of 12.95 MPa was estimated for Young’s modulus

(E) of the tube by analysing the stress-strain curves recorded during these experiments. The effect of the air pressure

on the bending stiffness of the tube was estimated through an indirect method as explained in section 4.1. Alongside

the execution of the experiments, pictures were taken by a Sony Alpha 6300 camera whereas movies were taken with

a Sony PXW-FS5 video camera (30 fps).
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Figure 1: (a) The scheme of the problem. (b) A 2 degree-of-freedom structure, made up of 2 rigid bars connected by elastic hinges, is subject to an

orthogonal follower force. The external work done by such force is path-dependent and therefore a positive work can be extracted in a closed path

(1→2→3→4) (Bigoni, 2019). (c) The experimental setup exploited in the experiments. The transverse follower force is provided to the end of the

cantilever tube by a fluid (air) flowing from a small void orthogonal to the beam axis.
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2.2. Numerical and theoretical methods for the deformation and instabilities

Abaqus simulations were performed with the purpose to confirm the theoretical findings and complementing the

experiments. The circular elastic rod, clamped at one end and subject to the transversal follower force at the other

end, was modelled with about 400 2D beam elements (B23). The same geometrical and mechanical properties used

in the experiments were also considered in the simulations to approximate the real behaviour of the structure better.

Two types of simulations were carried out to mimic the experiments. In one case, Dynamic/Explicit simulations were

performed to capture the first instability onset. In the other case, Static Riks Analysis were exploited to circumvent

instabilities and achieve large deformation. A similar approach was also used experimentally by carefully tuning the

pressure of the air flowing from the small circular void orthogonal to the beam axis. The applied load was increased

very smoothly (Smooth-step type) as done experimentally.

3. Theory

The equations of equilibrium of forces and moments of a bent, unshearable and inextensible elastic rod are (Frisch-

Fay, 1962), (Antman, 1968)

Q′ − µN − q = 0, N′ + µQ = 0, M′ − Q = 0, (1)

where (·)′ = d/dS with S being the arc length, Q is the shear force, µ is the curvature, N is the axial force, M is the

bending moment and q is a distributed normal load. The kinematics of the elastica is given by

θ′ = µ, x′ = cos θ, y′ = sin θ, (2)

with θ being the rotation and x and y the Cartesian coordinates. We further assume a linear elastic constitutive model,

a homogeneous material and uniform cross-section along the whole rod

M = E I µ, (3)

with E the Young modulus and I the second moment of area of the cross-section. We now introduce the following

dimensionless variables

S ∗ =
S
L
, µ∗ = µ L, (4)

with L being the length of the rod. We obtain the following dimensionless variables for the boundary conditions,

where (·)0 refers to variables at S = 0

M∗0 =
M0 L
E I

, Q∗0 =
Q0 L2

E I
, N∗0 =

N0 L2

E I
, q∗ =

q L3

E I
, (5)

with M0 being a moment applied to the free end, Q0 a terminal shear force, N0 an applied terminal axial force and q a

distributed load. The equations (1) can be combined in the single equation

µ′′ +
1
2
µ3 − A µ − q = 0, (6)
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with

A = N0 +
1
2
µ0

2. (7)

In the equation above, µ0 is an applied curvature or bending moment at the free end of the rod. We have removed the

(·)∗ for ease of reading. Multiplying both sides of equation (6) by µ′ and considering q uniform (independent from S ),

after integrating between 0 and S we obtain

µ′2 +
µ4

4
− A µ2 − 2 q µ = B, (8)

with

B = N0
2 + Q0

2 − A2 − 2 µ0 q. (9)

Equation (8) is the most general form that includes all the possible boundary conditions. We consider µ0 = N0 =

q = 0, therefore we get

µ′2 = −
µ4

4
+ Q0

2. (10)

3.1. Calculation

The phase portrait of equation (10) is shown in figure 2a. By examining such plot, we find a priori some properties

of the solution µ(S ) (figure 2b). For example, the µ − µ′ curve is closed, which means that the solution µ(S ) must

be periodic in space, with period 4 S max, and oscillates between −µmax and µmax. Also, five points of the solution are

known. The first one is the initial condition µ(0) = 0 with initial slope µ
′

= µ
′

max = Q0 equal to the maximum possible

slope. Assuming that Q0 > 0, the solution proceeds anticlockwise from the initial condition. The second known point

is a maximum for S = S max, where µ
′

= 0 and µ = µmax; the third one is a zero of the solution at S = 2 S max with

maximum negative slope −µ
′

max; the fourth point is a minimum for S = 3 S max, where µ
′

= 0 and µ = −µmax; finally,

the last known point is a zero at S = 4 S max with slope µ
′

max. Because of the double symmetry of the phase portrait

(figure 2a), µI−II = −µIII−IV and µI and µII are symmetric with respect to the µ axis. The value of µmax can be easily

computed from equation (10) by setting µ′ = 0

µmax =
√

2 Q0, (11)

while the value of µ′max is obtained from equation (10) by setting µ = 0

µ′max = Q0. (12)

The full details of the solution of the equation (10) can be found in Appendix A. We recall here the main results.

The solution µ(S ) is a periodic solution with quarter-period S max that oscillates between −µmax and µmax

S max =
2 K(−1)
µmax

=

√
2

Q0
K(−1), (13)
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Figure 2: Phase portrait of equation (10) and curvature µ(S ). (a) Phase portrait with Q0 > 0: the solution µ(S ) is periodic in space. The dots are

points of the solution, known a priori. Also, the solution has a double symmetry with respect to axes µ and µ
′
. (b) The four stages of the solution

µ(S ).

with K(−1) being the complete elliptical integral of the first kind of argument −1. Let us then normalise the curvature

and the curvilinear abscissa

S̄ =
S

S max
, µ̄ =

µ

µmax
. (14)

The solution is then

µ̄(S̄ ) = sn
(
K(−1) S̄ | − 1

)
, (15)

µ̄′(S̄ ) = K(−1) cn
(
K(−1) S̄ | − 1

)
dn

(
K(−1) S̄ | − 1

)
, (16)

with sn, cn and dn being respectively Jacobi sn, cn and dn elliptic functions.

The rotation is

θ(S ) = β1 − β(S ) , β1 = β(1) = θ0 , (17)

with

β(S̄ ) = arcsin
(
µ̄2

)
sign

(
µ̄′

)
+ π

(
n↓(S̄ ) − n↑(S̄ )

)
, (18)

where n↓(S̄ ) is the number of times µ′ changes sign from positive to negative between 0 and S̄ , while n↑(S̄ ) is the

number of times µ′ changes sign from negative to positive

n↓(S̄ ) = 1 +

⌊
S̄ − 1

4

⌋
, n↑(S̄ ) = 1 +

⌊
S̄ − 3

4

⌋
, (19)

where

bxc = x − {x} , (20)

with {x} = mod (x, 1) and mod being the module function.
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The deformation is

x(S̄ ) = 1 − Icθ (µ̄1) + Icθ (µ̄),

y(S̄ ) = −Isθ (µ̄1) + Isθ (µ̄),
(21)

with

Icθ = cos β1 Icβ (µ̄) + sin β1 Isβ (µ̄) , Isθ = sin β1 Icβ (µ̄) − cos β1 Isβ (µ̄) , (22)

and

Icβ =

√
2

Q0
µ̄, Isβ =

√
2

Q0

(
sign

(
µ̄′

)
I2(S ) + 2 I2(1)

(
n↓ + n↑

))
. (23)

In the previous equation

I2(µ̄) =

∫ µ̄

0

µ̄2√
1 − µ̄4

dµ̄ = E(arcsin µ̄ | − 1) − F(arcsin µ̄ | − 1), (24)

where E is the elliptic integral of the second kind and F is the elliptic integral of the first kind.

4. Results and Discussion

By using the aforementioned experimental setup, we executed both qualitative and quantitative experiments to

test the validity of the proposed theoretical model. Eventually, specific experiments were executed to capture the

unstable mode of the cantilever beam. To compare the theory with the experiments the relation between the pressure

pin and the follower thrust Qexp,th acting at the top of the beam has been derived exploiting the continuity equation,

the momentum equation and the energy equation on each Control Volume Element (CVE) reported in Fig. 6a. Such

a relation has been determined for: i) the ideal case with no-dissipations and ii) the real case with the presence of all

the sources of dissipation such as the wall friction and the sudden contraction of the flow area. The pressure/thrust

relation is given in a closed-form expression for the ideal case, equation (68). When the dissipations are introduced

into the model, a specific numerical algorithm has been developed to compute iteratively the mass flow and, thus, the

generated end thrust. For a specific value of the recorded pressure, the discrepancy between the follower thrust Qexp,th

for the ideal case (black/dashed line in Fig. 6b) and the real case (black/continuous line in Fig. 6b) gives a quantitative

assessment of the mass flow losses affecting the experiments. In the investigated pressure range, the average decrease

of the follower thrust associated to mass flow losses is of about 9.35 % ± 3.79 % with a minimum value of 5.91% for

a pressure of 2 bar. It is worth to mention that the mass flow losses are in percentage higher for low pressure. The

relation between the transversal follower force Qexp,th and the air pressure pin, expressed by the equation (67), is of

the type Qexp,th ∝ kpc
in, with k ∈ < and 1 < c < 2. In the previous expression, the non-linear behaviour is related

to the fact that air is a compressible fluid whose density and temperature deeply depend on the pressure. In fact, if

the fluid was incompressible, such as water, the relation between Qexp,th and the air pressure pin would be linear. See

Appendix B for the details.
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4.1. Quasi-static experiments

The comparison between theory and experiments was accomplished as follows. First, a deformed configuration of

the structure was computed analytically integrating the equation of the Elastica for increasing values of the follower

force, Qtheory. Then, the follower thrust Qexp,th, function of the air pressure, needed in the experiments to match

the predicted deformed configuration (for each of the given Qtheory) was evaluated. In Fig. 3a, each of the blue/disk

markers depicts the relation between the (dimensionless) theoretical, Qtheory, and experimental, Qexp,th, follower force

that yields to the same deformed configuration of the structures. In the graph, the markers and their relative bars

represent, respectively, the mean value and the standard deviation of the results collected performing 4 different

experiments.
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Fig. 3: Relation between the (dimensionless) theoretical and experimental transverse force that produce the same deformed configuration of the

structures. Each marker refers to different deformed configurations. (a) Relation between Qtheory and Qexp,th. The blue/dashed line represents the

non-linear best-fit curve defined by the 2-parameters model (equation (25)). The slope change attained at Qtheory ≈ 5 − 7 (orang/dashed line) could

be assumed as a threshold for which the present experimental apparatus provides inaccurate or accurate results. (b) Relation between Qtheory and

the actual force Qexp produced at the top of the beam (computed accordingly with the equation 27). In this case, the results can be well represented

by a straight line with slope 1.

If theory and experiments were in perfect agreement, each Qexp,th estimated experimentally would be equal to the

corresponding Qtheory imposed to solve the equation of the Elastica. Therefore, the experimental results depicted in

Fig. 3a should be well fitted with a straight line of slope 1. Instead, a two-parameters non-linear model of the type

Qexp,th = a Q b
theory, where a ≈ 2.785, b ≈ 0.839, (25)
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represents the best fit for the experimental data reported in Fig. 3a over the whole investigated Qtheory range. In the

previous equation, Qexp,th represents the value of Qexp,th provided by the non-linear fit (blue/dashed line in the figure).

As expected, the experimental results show some deviation from ideality. Firstly, a larger force is needed in the

experiments to achieve the deformed configurations computed theoretically at first. Since the air flow dissipations have

been taken into account in the calculation (Appendix B), the discrepancy between Qexp,th and Qtheory has to be referred

mainly to (i) the tube/substrate interaction and to (ii) the flexural rigidity increase due to the internal air pressure.

In fact, the Elastica has been solved neglecting the friction between the tube and the substrate and considering a

constant bending stiffness EI for the flexible tube, namely independent from the internal air pressure. Hence, a Qexp,th

greater than Qtheory is required in the experiments to overcome friction (that always opposes the motion) and to deform

the flexible tube which stiffens as the internal air pressure increases. The order of magnitude of friction effect was

determined via the following approximate calculation. The resultant friction force, R̂ f , that opposes to motion is

µ f Ptube=6.62×10−3 N which correspond to a dimensionless R f = R̂ f L2
tube/(EI) ≈8. Such a resultant force acts at

Ltube/2 and generates a reactive couple R f Ltube/2 at the clamped end of the tube. For simplicity, we have imagined

frictional effect equivalent to a concentrated force Q f acting at the top of the beam that reduces the applied air-thrust.

This force, equal to Q f = R f /2, was determined by imposing the equivalence between the generated reactive couples

at the clamped end of the beam, namely R f Ltube/2 = Q f Ltube. Of course, this value is purely indicative as it is realistic

only at the beginning of the experiments when the tube is almost straight. In fact, the very complicated shapes assumed

by the Elastica undergoing large deformations lead to a non-constant reactive couple (evaluated at the clamped end

of the tube) as the beam deforms. Hence, the effect of friction, that opposes to motion, is not constant during the

evolution of the experiments. Moreover, we have observed that the applied end-thrust does not remain entirely on

the plane of motion but tends to assume a slightly out-of-plane direction. This aspect leads to the occurrence of the

stick-slip phenomenon. To provide an exact quantification of this phenomenon is not a trivial task. We have decided

to take this into account through a concentrated force applied at the free end of the same order of magnitude of

previously determined Q f , namely Qstick−slip ≈4. Eventually, friction and stick-slip have been assumed equivalent to

a Q f ric,tot = Q f + Qstick−slip ≈8, acting at the top of the flexible tube that opposes motion. Assuming for simplicity

constant and equal to Q f ric,tot ≈ 8 the detrimental effect of friction and stick-slip, we have decided to combine the

remaining discrepancies between the theoretical model and the experiments into a non-constant coefficient η(pin) that

counts the bending stiffness increase due to internal air pressure. Such a coefficient permits to define an effective

dimensionless end-thrust Qexp,e f as a function of an effective elastic modulus E(pin) = η(pin)E,

Qexp,e f =
Qexp,th

η(pin)
=

Q̂exp,thL2

η(pin)EI
=

Q̂exp,thL2

E(pin)I
, (26)

where Q̂exp,th is the dimensional end-thrust. The experimental follower end-thrust purified from all the dissimilarities

between the theoretical model and the experiments (friction between the beam and the substrate, frictional dissipation
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along the tube, sudden changes in flow area, bending stiffness increase due to air pressure) is estimated via the relation

Qexp =
Qexp,th

η(pin)
− Q f ric,tot. (27)

Each ηi value is determined in post-processing by exploiting the trend line (equation (25)) and by imposing Qexp,i =

Qtheory,i in equation (27) as

ηi(pin,i) =
Qexp,th,i

Qtheory,i + Q f ric,tot
, (28)

where Qexp,th represents the value of Qexp,th provided by the trend line. The coefficient η(pin), estimated by equation

(28), ranges between ≈ 1 (pin= 0.18 bar) and ≈ 1.24 (pin= 1.8 bar). Indeed, such coefficient provides just an estimate

of the flexural rigidity increase due to internal pressure since it has been determined by an indirect method. In Fig. 3b,

the (dimensionless) theoretical values of the follower force (Qtheory) are compared with the actual mean value of the

follower force (Qexp) produced at the top of the beam and computed by applying the equation (27). In this case,

it can be observed that the markers are well-fitted by a straight line with slope 1. This means that now theory and

experiments are in good agreement.

In Fig. 4 the snapshots of deformed Elastica as observed in the experiments (frames extracted from the movies

taken during a test) are superimposed to those predicted by the mathematical model (red/dashed lines). The deformed

shapes depicted in the sub-figures and labelled from 1 to 10 refer to an increasing transverse force applied at the top

of the beam. The results shown in Figs. 4 and 5 suggest a Qtheory ≈ 5 as a threshold value for which the present

experimental apparatus provides inaccurate or accurate results. In fact, from this value onwards, the deformed shapes

observed experimentally start to coincide with those predicted theoretically (Fig. 5). Such a value almost agrees with

the marked change of slope of the experimental trend line attained at Qtheory ≈ 7, as shown in Fig. 3a (orange/dashed

line).

In the same figure, it is also reported the deformed configurations obtained through FE Static Riks analysis

(green/continuous line). By observing the photos, we highlight how the theory slightly differs from the experiments in

the first snapshots (2 and 3). This problem is manly due to the friction and stick-slip between the silicon tube and the

Teflon sheet that is in percentage higher for low value of the applied air-thrust. In fact, at the beginning of the test the

applied force is small if compared to the friction force. From the fourth snapshots forward the experiments definitely

substantiate the theoretical prediction and the numerical findings. From the figures, we can appreciate the appearance

of the deformed hook-shaped configurations for Q greater than 20. The matching is almost perfect for Q ranging from

about 35 to 100 where the hook-like shapes are coincident with those predicted theoretically and numerically. For Q

higher than 100 a slight discrepancy between experiments and theory is revealed (tenth snapshot). By manually tuning

the pressure gauge of the experimental apparatus, we were able to overcome the first unstable mode that appears at

about Q ≈ 41 and reaching relative extreme deformations of the rod up to (dimensionless) loads of 120. In conclusion,

the comparison between the deformed structure captured during a test, the theoretical prediction and the FE results,

shown in Fig. 4, reveals a globally good agreement. A record of a quasi-static experiment and its comparison with
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Fig. 4: The Elastica as predicted from the theory (red/dashed line) is superimposed to experiments (blue/continuous line) and FE results

(green/continuous line). In this case, a Riks analysis was performed in Abaqus to circumvent instabilities and achieve large deformations. Each

sub-figure, labelled from 1 to 10, refers to an increasing follower shear force acting at the top of the beam.

numerical and theoretical predictions is provided as supplementary material.

Subfigure 1 2 3 4 5 6 7 8 9 10

Qtheory 0 1 2 20 27 36 52 78 95 120

Qexp 0 0.88 1.26 16.05 24.30 38.69 53.99 78.59 90.70 117.34

Table 1: Comparison between the (dimensionless) theoretical values of the follower force (Qtheory) and the actual follower force (Qexp) estimated

in the experiments to achieve the deformed shapes reported in Fig. 4.

Table 1 shows the comparison between the (dimensionless) theoretical values of the follower force (Qtheory) and

the actual follower force (Qexp) computed through the equation (27) to achieve the shapes reported in Fig. 4.

4.2. Stability experiments

The same experiments reported in Fig. 4 were repeated to capture the unstable mode of the cantilever beam, as

predicted from the numerical simulations. Such results are shown in Fig. 5. In these experiments, the pressure of

the air flowing from the small circular void was simply increased linearly without any particular tuning expedient.

The deformed shapes depicted in the sub-figures and labelled from 1 to 5 refer to an increasing transverse force

applied at the top of the beam. From the second to the fourth snapshot, the experiments are in good agreement

with theoretical predictions, as observed in the quasi-static experiments. As discussed in detail in subsection 4.1,
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the trend line reported in Fig. 3a shows a marked change of slope at a value of Q ≈ 7. This peculiarity seems

to represent the transition from which the deformed shapes observed experimentally start to coincide with those

predicted theoretically. Therefore, such a value could be assumed as the lower limit for which the experimental

apparatus provides accurate results. The numerical solution revealed that an unstable mode appears at Q0 = 40.5

against a Q0 = 41.15 observed in the experiments. The fifth snapshot shows the appearance of the first instability

mode. The instability onset was estimated both numerically and experimentally following the same criterium. The

adopted method consists in comparing subsequent frames extracted from the record of the experiments (or of the

simulations). We have assumed as the instability onset the value of Q such that from this value onwards 4 subsequent

frames exhibit dynamic oscillations characterized by a monotonically increasing amplitude. A record of an experiment

performed to capture the instability onset, and its comparison with numerical prediction is provided as supplementary

material.
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Fig. 5: The Elastica as predicted from the theory (red/dashed line) is superimposed to experiments (blue/continuous line) and FE results

(green/continuous line). In this case, a Dynamic/Explicit analysis was performed in Abaqus to capture the unstable mode. Each sub-figure,

labelled from 1 to 5, refers to an increasing follower shear force acting at the top of the beam.

5. Conclusions

In this paper, we presented a device capable of creating an ”approximate” perpendicular follower force. Unfortu-

nately, the complexity of this problem prevents the exploiting of the Bigoni and Noselli (Bigoni and Noselli, 2011)

setup that would produce a ”nearly” perfect follower force as thought by Ziegler. The rig consists of a flexible silicone

tube with a circular opening at the free end. A pressure gauge provides air flow to the fixed end — the thrust generated

by the outflow results in a shear follower force. The motivation behind the design of such apparatus was the appear-

ance of charming deformations of a cantilever rod subjected to a shear follower force. In particular, the closed-form

solution of the Elastica (derived in this paper) showed fascinating shapes at relatively high loads. By relatively, we

mean a shear force Q0 normalised to the bending stiffness EI of the rod, meaning Q0L2/(EI), with L being the length

of the rod. At high loads, Q0 > 10, the analytical solution dictates a deformation that seems hook-like, with spatial

dimensionless frequency 1/S max increasing with the load to a law Q 1/2
0 (from equation (13)). The deformed shapes

13



predicted theoretically were compared with those obtained by performing both quasi-static experiments and Riks nu-

merical simulations. Such a comparison showed a good agreement between experiments, FE simulations and theory.

Finally, stability experiments were carried to capture the first instability mode of the flexible beam. Moreover, an ex-

plicit finite-element calculations were performed in Abaqus to verify the instability onset determined experimentally.

The setup presented in the article can find application in several fields. For instance, these results can play a key role in

the description and in the understanding of pressure-fed compliant mechanisms (e.g. in the design of soft-actuators),

in the realization of more efficient drilling devices or in the design of biomedical equipment, such as catheters.
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Appendix A Analytical solution of the Elastica under a terminal shear follower force

A.1 Curvature

Assuming 0 ≤ S ≤ S max and Q0 > 0, equation (10) can be written as

dµ√
1 − µ̄4

= Q0 dS , (29)

where µ̄ = µ/µmax. Let us consider the normalized variable S̄ = S/S max, with the exact expression of S max still

unknown at this stage: the equation (29) becomes

dµ̄√
1 − µ̄4

=
1
2
µmax S max dS̄ . (30)

By integrating both sides between 0 and respectively µ and S we obtain

F(arcsin µ̄,−1) =
µmax S max

2
S̄ , (31)

where F(ϕ, k) is the incomplete elliptic integral of the first kind. Inverting equation (31), we get

µ̄(S̄ ) = sn
(
µmax S max

2
S̄ | − 1

)
, (32)

where sn is the Jacobi sn elliptic function. The quarter-period of the sn function is given by the complete elliptic

integral of the first kind K(−1), therefore

S max =
2 K(−1)
µmax

=
√

2 K(−1) Q−1/2
0 ≈ 1.8541 Q−1/2

0 . (33)
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To summarise

µ̄(S̄ ) = sn
(
K(−1) S̄ | − 1

)
, (34)

µ̄′(S̄ ) = K(−1) cn
(
K(−1) S̄ | − 1

)
dn

(
K(−1) S̄ | − 1

)
, (35)

with cn and dn being respectively Jacobi cn and dn elliptic functions. The differential relationship between µ̄ and S̄ is

dS̄ =
1

K(−1)
sign

(
µ̄′

) dµ̄√
1 − µ̄4

. (36)

A.2 Rotation

With boundary condition θ(1) = 0, the rotation is given by

θ(S ) =

∫ 1

S
µ(S ) dS =

∫ 1

0
µ(S ) dS −

∫ S

0
µ(S ) dS = β1 − β(S ), (37)

where

β(S ) =

∫ S

0
µ(S ) dS β1 = β(1). (38)

The integral of the curvature in S can be computed as follows

β(S ) = µmax S max

∫ S̄

0
µ̄ dS̄ = 2 K(−1)

∫ S̄

0
µ̄ dS̄ . (39)

Using equation (36)

β(S̄ ) = 2
∫ µ̄

0

µ̄√
1 − µ̄4

sign
(
µ̄′

)
dµ̄ (40)

We now integrate equation (40) by parts. To this end, let us define

I(µ̄) =

∫ µ̄

0

µ̄√
1 − µ̄4

dµ̄ =
1
2

arcsin
(
µ̄2

)
. (41)

Therefore,

β = arcsin
(
µ̄2

)
sign

(
µ̄′

)
+ 2

∫ µ̄

0
I(µ̄)

d sign (µ̄′)
dµ̄

dµ̄ (42)

The derivative of the sign of µ̄′ with respect to µ̄ is a sum of Dirac delta functions, centred in µ̄ = −1 (where µ̄′ goes

from negative to positive), and µ̄ = 1 (where µ̄′ goes from positive to negative).

d sign(µ̄′)
dµ̄

= 2
∑
−δ(µ̄ − 1) + δ(µ̄ + 1). (43)

We notice that I(±1) = π/4. Therefore,

β(S̄ ) = arcsin
(
µ̄2

)
sign

(
µ̄′

)
+ π

(
n↓(S̄ ) − n↑(S̄ )

)
, (44)

where n↓(S̄ ) is the number of times µ′ changes sign from positive to negative between 0 and S̄ , while n↑(S̄ ) is the

number of times µ′ changes sign from negative to positive.
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A.3 Deformation

With boundary condition x(1) = 1 and y(1) = 0, the coordinates of the deformed configuration are given by

x(S ) = 1 +

∫ S

1
cos θ(S ) dS = 1 −

∫ 1

0
cos θ(S ) dS +

∫ S

0
cos θ(S ) dS , (45a)

y(S ) =

∫ S

1
sin θ(S ) dS = −

∫ 1

0
sin θ(S ) dS +

∫ S

0
sin θ(S ) dS (45b)

We notice that

cos θ = cos β1 cos β + sin β1 sin β, sin θ = sin β1 cos β − cos β1 sin β. (46)

Moreover,

cos β(S ) = (−1)n↓−n↑ cos
(
µ̄2

)
, sin β(S ) = (−1)n↓−n↑ sign

(
µ̄′

)
µ̄2 = µ̄2, (47)

where we used (−1)n↓−n↑ sign (µ̄′) = 1 if Q0 > 0.

Hence, using equation (36)∫ S

0
cos β(S )dS = Icβ = S max

∫ S̄

0
cos β(S )dS̄ =

√
2

Q0

∫ µ̄

0
,

cos arcsin µ̄2√
1 − µ̄4

dµ̄ =

√
2

Q0
µ̄ (48)

∫ S

0
sin β(S )dS = Isβ = S max

∫ S̄

0
sin β(S )dS̄ =

√
2

Q0

∫ µ̄

0
sign

(
µ̄′

) µ̄2√
1 − µ̄4

dµ̄. (49)

Let us define

Iβ(S ) =

∫ µ̄

0

µ̄2√
1 − µ̄4

dµ̄ = E(arcsin µ̄ | − 1) − F(arcsin µ̄ | − 1), (50)

where E is the elliptic integral of the second kind and F is the elliptic integral of the first kind. Then,

Isβ =

∫ S

0
sin β(S )dS =

√
2

Q0

(
sign

(
µ̄′

)
Iβ(S ) + 2 Iβ(1)

(
n↓ + n↑

))
, (51)

where and Isβ(1) ≈ 0.5991.

Appendix B Estimation of the transverse thrust provided by the air flow

The transverse follower force, acting at the end of the beam, was provided via the air thrust. This force, linked to

the Newton’s third low, is generated by the reaction applied to the beam by the accelerating air flowing from the small

circular void present at the top of the beam. In this section, the thrust as a function of the measured pressure is derived

for the experimental problem schematized in Fig. 6a. Such expression is obtained by applying the continuity equation,

the momentum equation and the energy equation to each Control Volume Element (CVE) reported in Fig. 6a.

Momentum equation. With reference to a generic CVEi defined by the control sections CSinlet and CSexit the momen-

tum equation writes ∑
CVEi

F =
∑
CVEi

Fbody +
∑
CVEi

Fsurface =
∑

CS exit

βṁv −
∑

CS inlet

βṁv, (52)

where β is a correction factor (for turbulent flows can be assumed ' 1), ṁ is the mass flow, v the velocity and
∑

F the

sum of all the body forces and the surface forces acting on the CVE at a particular instant in time.
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Fig. 6: (a) Scheme of the thrust problem. (b) Transversal dimensionless follower force Qexp,id acting at the top of the beam as a function of the

pressure p0 recorded during the experiments for the ideal case (black/dashed line) and the real case with dissipations (continuous/black line).

Continuity equation. The conservation of the mass flow ṁ (continuity equation) through each CSi can be expressed

as

ṁ = Ai ρi Vi = const, ∀i ∈ N, (53)

where Ai is the CS area, ρi is the air density and Vi the air velocity. Since the air, assumed dry, is a compressible fluid

its density is not constant but depends on pressure and temperature accordingly with the following equation

ρ(p,T ) ' ρdry(p,T ) =
p

RspecT
, (54)

where T is the absolute temperature [K], p the absolute pressure [Pa], Rspec = 287.058 [J/(kg K)] the specific gas

constant for dry air. For adiabatic and isoentropic compression/expansion processes of an ideal gas the relations

among its temperature T , pressure p and density ρ are

p1−γT γ = const,
ρ

p1/γ = const, (55)

where γ is the heat capacity ratio Cp/Cv. Such a ratio is γ = 7/5 for air.

Energy equation. In the case of a steady flow with no shaft work, negligible change in elevation and that takes place

adiabatically, the energy balance (first low of thermodynamic) reduces to

h +
V2

2
= h0 (56)
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where V is the speed flow and h is enthalpy of the system and h0 is stagnation (or total) enthalpy.

The enthalpy, equal to the internal energy u plus the product of its pressure p, and its volume V , can be expressed

as a function of the heat capacity ratio, the pressure and the density as

dh = cpdT ⇒ h =
γ

γ − 1
p
ρ

(57)

Therefore, the energy balance low can be written as

V2

2
+

γ

γ − 1
p
ρ

= h0, (58)

or equivalently in terms of the mass flow ṁ as

ṁ2

2 (ρA)2 +
γ

γ − 1
p
ρ

= h0. (59)

B.1 Air flow with friction

This subsection is devoted to the estimation of the pressure drop between the CS2 and CS3, namely along the

Silicon tube, caused by wall friction (Fanno flow) (Cengel and Cimbala, 2013; White, 2017; Shapiro, 1953). In the

case of a compressible fluid, such as air, and high speed flow the wall friction is usually negligible for short ducts with

big cross-sectional area. On the contrary, frictional losses are not negligible for long duct with small cross-sectional

area. To correctly take into account wall friction it is convenient rewrite the momentum equation in its differential

form

dp +
δF f riction

A
+ ρvdv = 0. (60)

In the previous equation, δF f riction is the friction force that is generated between the inner surface of the duct and the

flowing fluid. Such a force is defined as

δF f riction = ρV2 f
2

A
Dh

dx, (61)

where f is the friction factor and Dh the hydraulic diameter of the duct; in the case of circular duct Dh = d. The

friction factor f can be evaluated via the following relation, known as the Colebrook equation

1
f

= −2.0 log

ε/D3.7
+

2.51

Re
√

f

 , (62)

where Re= VavgD/ν is the Reynolds number (Vavg is the average flow velocity, ν = µ/ρ the kinematic viscosity of

the fluid, for air ν ≈ 10−5 m2/s) and ε the roughness of the tube. For the specific case of a Silicon surface, ε is about

0.2-0.3 nm. In the case of compressible fluid flow, it is instrumental to define the variation of the flow properties in

terms of the Mach number, Ma = V/
√
γRspecT , that defines flow regimes. For instance, the flow is sonic when Ma=1,

subsonic when Ma<1 and supersonic when Ma>1. In our experiments, the flow regime is always subsonic (Ma<1).
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The pressure drop along the tube can be computed knowing the flow Mach number at the inlet CS2 (Ma2) and at the

exit CS3 (Ma3), as

∆P f riction = P2 − P3 = P2

1 −
1

Ma3

 k + 1
2 + (k − 1)Ma2

3

1/2

1
Ma2

 k + 1
2 + (k − 1)Ma2

2

1/2

 . (63)

B.2 Sudden contraction of the flow area

The effect of the sudden contraction of the flow area between CSin and CS5 has been evaluated accordingly with

the procedure reported in the work (Trengrouse and Soliman, 1966). In the case of a compressible fluid, the dissipation

due to sudden changes in the flow area are usually considered ”minor losses”. The pressure losses are assumed to be

negligible from CSin to the vena contracta CS4 while they can cause an entropy increase from the vena contracta (CS4)

to CS5. The pressure drop ∆Pcontraction is determined by applying the continuity equation, the momentum equation and

the energy equation to the CVE3 considering an effective flow area at the vena contracta A4 = CdAint, smaller than

that of the duct, Aint=πd2
int/4. The steady flow discharge coefficient Cd, function of the area contraction (Ain/Aint) and

of the pressure drop (Pin/P4), is defined as

Cd = 1.02
Pin

P4
− 0.36

(
Pin

P4

)2

. (64)

B.3 Thrust acting at the top the beam

The thrust P acting at top of the beam can be derived from the momentum equation applied on CVE4 as

P =
∑

F =
∑
CS out

βṁv −
∑
CS in

βṁv (65)

where β is a correction factor (for turbulent flows can be assumed ' 1), ṁ is the mass flow and v the velocity.

Being pout ' patm, the transverse follower force F, equal to the component of the air thrust S along the y axis can

be expressed as

Qexp,th = Py ' ρatmAoutv2
out, (66)

where ρatm = 1.204 kg/m3 is the air density at 20 ◦C and at 101.325 kPa, Aout = πd2
out/4 the area of the void at the top

of the beam and dout its diameter.

By applying eqns. (66), (53) and (59) on each control CSi reported in Fig. 6a it is possible to obtain the analytical

equation that provides the mass flow ṁ.

Finally, note ṁ from the above equation, the transversal follower force Qexp,id generated by the air flow and the

pressure pin recorded during the experiments is

Qexp,th =
ṁ2

ρout Aout
(67)
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In the Fig. 6b is reported the dimensionless transversal follower force Qexp,th as a function of the pressure p0 mea-

sured during the experiments for the ideal case (no-dissipations, black/dashed line) and the real case (with dissipations,

blue/continuous line). The curves are obtained replacing each parameter with the actual value of the experiments ac-

cordingly with those reported in Sect. 4.

B.3.1 Ideal case (no-dissipations)

For the ideal case of no-dissipations (frictionless tube and negligible effect of the sudden change of area between

CSin and CS5) the mass flow ṁ can be determined through the closed-form expression

ṁ =

√√
2γ
γ − 1

(
pin

ρin
−

patm

ρatm

)  1
ρ2

atmA2
out
−

1
ρ2

inA2
in

−1

. (68)

The previous expression has been obtained by applying the continuity equation, the momentum equation and the

energy equation on CSin and CSout.

B.3.2 Real case (with dissipations)

In the event that the effect of the wall friction and the sudden contraction of the flow area are not neglected, the

mass flow cannot be determined via a closed-form expression as in the ideal case. For this purpose, a specific algo-

rithm has been written in Mathematica to compute iteratively the mass flow known the pressure p0 recorded during

the experiments. For each pressure pin, the code determines the mass flow ṁdiss with all the sources of dissipation, as

shown in sects.B.1) and B.2, assuming as a mass flow of the first-attempt that provided by equation (68) for the ideal

case. The condition ek = (ṁk
diss- ṁk−1

diss)/ṁ
k
diss < 0.001 on the residual error has been assumed as termination criteria

for the iterative procedure (k represents the iteration step). The value of ṁk
diss for which such a condition is matched

represents the mass flow for the real case with dissipation.
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22


	Introduction
	Material and Methods
	Experimental apparatus
	Numerical and theoretical methods for the deformation and instabilities

	Theory
	Calculation

	Results and Discussion
	Quasi-static experiments
	Stability experiments

	Conclusions
	Appendix  Analytical solution of the Elastica under a terminal shear follower force
	Curvature
	Rotation
	Deformation

	Appendix  Estimation of the transverse thrust provided by the air flow
	Air flow with friction
	Sudden contraction of the flow area
	Thrust acting at the top the beam
	Ideal case (no-dissipations)
	Real case (with dissipations)



