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Abstract

A micromechanical approach is set-up to analyse the increase in elastic stiffness related to
development of plastic deformation (the elastoplastic coupling concept) occurring during
the compaction of a ceramic powder. Numerical simulations on cubic (square for 2D) and
hexagonal packings of elastoplastic cylinders and spheres validate both the variation of the
elastic modulus with the forming pressure and the linear dependence of it on the relative
density as experimentally found in Part I of this study, while the dependence of the Poisson’s
ratio on the green’s density is only qualitatively explained.
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1 Introduction
Densification of metal as well as ceramic powders is a problem connected with a strong

industrial interest, so that the micromechanics of this process has been the focus of a number
of investigations (almost all addressed to metal particles, while the akin problem of ceramic
powders has been much less investigated). Grains have been usually assumed as spherical (or
cylindrical for simplicity), so that micromechanics explains how plasticity and increase of contact
areas between particles influence the overall stress/strain behaviour. The analysis of this problem
sheds light on the macroscopic constitutive modelling of the powder, to be employed in the design
of moulds to form green pieces with desired shape. The compaction problem is also of great
academic interest in several fields, including biomechanics, where it traces back to the famous
‘Histoire Naturelle’ by the Count de Buffon, who reports on a (probably ‘thought’) experiment
with peas:

Qu’on remplisse un vaisseau de pois, ou plutôt de quelqu’autre graine cylindrique, et qu’on
le ferme exactement après y avoir versé autant d’eau [. . .]; qu’on fasse boullir cette eau,
tous ces cylindres deviendront des colonnes à six pans. On en voit clairement la raison,
qui est purament mécanique; chaque graine, dont la figure est cylindrique, tend par son
reflement à occuper le plus d’espace possible dans un espace donné, elles deviennent donc
toutes nécessairement hexagones par la compression réciproque.

This is an example of compaction of a package of spheres (figure 1), later continued by D’Arcy
Thompson in his On Growth and Form and others.
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Figure 1: Examples of packaged spherical particles in nature (pomegranate seeds, left, photo taken with a Panasonic
DMC-FZ5 digital camera) and in industry (an aluminium silicate spray dried powder, right, photo taken
with a Nikon SMZ-800 optical microscope equipped with DSF1i camera head).

Micromechanical models of powder compaction have been developed so far for a cubic (square
in 2D) geometry of spheres [1–4] or cylinders [5–8] in frictionless contact, and friction between
grains has also been considered for the latter geometry [5]. Random packing of cylinders and
spheres have been analyzed respectively in [5] and [4]. All the above-mentioned investigations, in
which the spheres and the cylinders are modelled within the framework of the J2-flow theory of
plasticity with linear hardening or perfectly plastic behaviour (figure 6), are all focused on the
determination of the yield surface at different stages of compaction.

The objective of the present article is to investigate how the plastic deformation of grains
during compaction influences the macroscopic elastic response of the material, an aspect never
considered before, but central in the development of elastoplastic coupling (see Part I of this
study). To this purpose, 2D (plane strain) and 3D square/cubic and hexagonal packings of
cylindrical and spherical grains are considered (figure 3). Although detailed information on the
constitutive law valid for the grains is not available, these are modelled via von Mises perfect
or linear hardening plasticity, which is typical of a basic and simple mechanical behaviour.
Representative volume elements of the cylinder and sphere packings are deformed to model
the state of uniaxial strain achieved in a cylindrical rigid die and the mean stress/mean strain
behaviour is numerically determined using the finite element program Abaqus Unified FEAr.
Once the uniaxial strain compaction has been completed, the representative element is unloaded
and reloaded under uniaxial stress to evaluate the average Young modulus and Poisson’s ratio of
the material. In this way it is possible to determine the variation of the elastic modulus with the
forming pressure and the dependence of the elastic modulus on the density. These evaluations
validate the experimental results presented in the Part I of this study. The micromechanical
evaluation of the Poisson’s ratio is more complicated than that of the elastic modulus. In this
case, the results from micromechanics correctly explain the qualitative increase of the Poisson’s
ratio with the forming pressure, but the values are not tight to experimental results.

The dependence of elastic stiffness on the level of plastic deformation is a crucial aspect of
elastoplastic modelling of geological and granular materials, including ceramic, metal powders,
and greens. Results provided in the present article explain the plastic micromechanisms inducing
elastic stiffening during compaction of ceramic powders.

2 A toy mechanical model to explain elastoplastic coupling
Before to set up the micromechanical model for the qualitative and quantitative explanation of

elastoplastic coupling, a simple mechanical model is presented with the aim of providing a simple
explanation of the phenomenon. The model is intended only to shed light on the mechanism of
increase in elastic stiffness due to plastic deformation and not to provide a quantitative evaluation.

Referring to an elastoplastic circular cylinder of initial height h0 and cross section of radius a0
(figure 2), this is inserted in a larger and coaxial cylindrical unit cell with cross section of radius
b0 > a0, so that when the cylinder is subject to a force F (positive when tensile), the nominal
stress is σn = F/(πb2

0), while the effective stress is σe = F/(πa2
0). Assuming that incompressible
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Figure 2: A toy model to explain elastic stiffening due to plastic deformation. The elastic circular cylinder of
initial radius a0, height h0, and elastic modulus E is coaxial to the unit cell of radius b0. Upon axial
plastic deformation, the inner cylinder has a radius a and height h (a > a0 and h < h0). If the plastic
strain is isochoric a2h = a2

0h0, so that the new geometry will result elastically stiffer than the initial one.

axial plastic deformation εp has brought the cylinder to a new height h and radius a, isochoricity
implies a2 = h0a2

0/h = a2
0/(1 + εp). The axial plastic deformation εp can be expressed in terms

of void ratio as
εp = e− e0

1 + e0
, (1)

where e0 = (b2
0 − a2

0)/a2
0 is the initial void ratio and e = (b2

0 − a2)/a2 is the current void ratio.
If the deformed cylinder is now loaded with a force F , the nominal stress remains equal to σn

(because the radius of the unit cell does not change), but the deformation is εc = F/(Eπa2), so
that the apparent elastic modulus defined as Ē = σn/εc is

Ē(εp) = E
a2

b2
0

= E
a2

0
b2

0(1 + εp) . (2)

Equation (2) is not expected to realistically represent the variation in elastic stiffness of a
ceramic powder, but provides a simple model to understand the elastoplastic coupling effect at
the microscale. In fact, for a compressive (and therefore negative) plastic deformation εp, the
apparent elastic modulus of the material Ē increases, as it happens in a ceramic or metallic
powder.

3 Micromechanical modelling

Square/cubic and hexagonal two-dimensional (grains are idealized as cylinders) and three-
dimensional (grains are idealized as spheres) granule dispositions are considered as representative
of ceramic powders, figure 3. Although at a first glance these geometries may appear far from the
reality, they are usually considered to represent correctly the overall behaviour of granulates [1–8].
For the considered packagings, symmetry allows the reduction into the primitive cells and the
unit cells shown in figure 3. For 2D (a quarter of a solid disk) and 3D (two eighths of a solid
sphere) the reduction is shown in figure 4 and 5, respectively. The grains are in contact with
smooth and rigid surfaces and all contacts between grains (and hence with the rigid surfaces) are
assumed to be frictionless.

Reference is made to the ready-to-press commercial grade, 96% pure, alumina powder (392
Martoxid KMS-96), one of the three investigated in Part I of this study. This powder has
particles of 170 µm mean diameter, obtained through spray-drying, and possesses a high plastic
formability, because particles are made up of an aggregate of microcrystals with a polymeric
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(a) 2D-Square packing, with the unit cell and the
primitive cell shown red.

(b) 2D-Hexagonal packing, with the unit cell and
the primitive cell shown red.

(c) 3D-cubic packing and its unit cell. (d) 3D hexagonal packing and its unit cell.

Figure 3: 2D and 3D packing geometries idealizing the ceramic powder; the unit cells describing the periodicity
and the primitive cells employed for the 2D numerical analysis are drawn red. The primitive cells for
the 3D analyses are shown in figure 5
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(a) Model for the square packing.
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(b) Model for the hexagonal packing.

Figure 4: The primitive cells employed for numerical simulations and depicted in figures 3a and 3b respectively are
shown with the appropriate boundary conditions for the two-dimensional, plane strain packing schemes
figures 4a and 4b.

4

http://dx.doi.org/10.1016/j.jeurceramsoc.2016.02.013


Published in Journal of the European Ceramic Society 36 (2016) 2169-2174; doi:10.1016/j.jeurceramsoc.2016.02.013

(a) Model for the cubic packing. (b) Model for the 3D hexagonal
packing.

Figure 5: The primitive cells employed for numerical simulations and depicted in figures 3c and 3d respectively are
shown with the appropriate boundary conditions for the three-dimensional packing schemes for square
(a) and hexagonal (b) geometries.
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Figure 6: Uniaxial stress/strain relation for ideal plastic behaviour (6a) and linear hardening (6b). Both these
constitutive equations are used in the modelling of the constitutive response of the ceramic grains.

binder. It is not known which constitutive equation models the material behaviour of the grains,
except that it is an elastoplastic constitutive law. For this reason, the simplest constitutive
framework of plasticity is selected, namely, the von Mises yield surface with isotropic elastic
part and perfectly plastic or isotropic hardening plastic law. These models are characterised
by an elastic Young modulus, a Poisson’s ratio, a yield stress and a plastic hardening (which is
null in the case of perfectly plastic behaviour), figure 6. These parameters are unknown at the
level of the single grain of powder. Therefore, we have used the constitutive parameters as free
parameters (although constrained to range within ‘reasonable’ values) to find the best match
with experiments. For this reason it is anticipated that the constitutive parameters have been
selected to be different for the different geometries.

Loading under uniaxial strain into a mould has been simulated with subsequent complete
unloading and reloading (within the elastic range) under uniaxial stress to determine the elastic
Young modulus ad Poisson’s ratio. To this purpose, the horizontal plane bounding the upper part
of the cell in figures 4 and 5 is assumed rigid and prescribed a vertical displacement, corresponding
to a mean strain in the homogenized material. After a certain mean strain (and corresponding
relative density) has been reached, a total unloading is prescribed and the elastic Young modulus
and Poisson’s ratio are evaluated through an elastic unconfined reloading (corresponding to
uniaxial average stress).

The numerical computations have been performed by means of the Abaqus Unified FEAr

software, in which the geometry described in figures 4 and 5 have been employed. In particular,
figures 4 and 5 are referring to the initial conditions of the confined uniaxial compaction of the
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Table 1: Material parameters for the ceramic grains employed in the numerical simulations providing the best fit
to the experiments

Grain mechanical properties Packing geometry
Square 2D Hexagonal Simple cubic 3D Hexagonal

Elastic modulus E 400 MPa 350 MPa 450 MPa 420 MPa
Poisson’s ratio ν 0.35 0.35 0.35 0.35
Yield stress fy 5 MPa 6.56 MPa 4.5 MPa 4.2 MPa

Hardening modulus Eh 320 MPa 335 MPa 250 MPa 220 MPa
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Figure 7: Simulated evolution of the elastic Young modulus with the forming pressure for a ceramic powder
idealized as two-dimensional square and hexagonal packings of elastoplastic cylinders. The material
properties of the grains have been selected differently (table 1) for the different packing schemes to
obtain a best fit of the experimental results. The shapes of the plastically deformed grains are reported
at different stages of forming.
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cylindrical ceramic powder specimens (as can be deduced by the presence of frictionless and rigid
side walls providing the confinement). The extraction of the specimen from the mould (preceding
the final unconfined uniaxial loading) is modelled through removal of the confining side walls.

In the two-dimensional models, structured meshes with CPE6H and CPE8H elements (6-
node triangular and 8-node quadrilateral hybrid elements, respectively) were employed, thus
yielding a total amount of 1894 elements and 5545 nodes for the quarter of cylinder, while in the
three-dimensional models a free mesh with C3D4 elements (4-nodes tetrahedral linear element)
was employed, thus yielding a total amount of 89 252 elements and 18 177 nodes for each eighth
of the sphere.

The confinement side walls were modelled as rigid elements and the contact interaction with
the grain was modelled as frictionless contact in a large displacement regime between master
(rigid surfaces) and slave (grain surface) surfaces, in which pressure-overclosure hard contact was
used, allowing also for the separation of the bodies after contact.

The unconfined re-loading was prescribed through extremely small load increments, in order
to accurately define the first part of the displacement-force curve from which the elastic Young
modulus and Poisson’s ratio of the unit cell can be deduced.

The material properties of the grains were selected differently for 2D and 3D, and for each
packing scheme (as reported in table 1). These different selections were introduced to obtain
the best fit between the elastic modulus of the unit cell and the experimental data (reported in
Part I of this study).

4 The evolution of elastic stiffness from micromechanics

The evolution of the elastic Young modulus E with the forming pressure is reported in figure 7
for the 2D simulations and in figure 8 for the 3D cases.

In the figures the plastically deformed shapes of the grains are reported upon unloading and
before the reloading imposed to determine the elastic Young modulus.

In both cases the material parameters listed in table 1 provide a close fit to experimental
results (on alumina powder, see Part I of this study) and highlight the elastoplastic coupling
effect, which is given now a micromechanical basis. Note that the differences in the geometries of
the disposition of spheres and cylinders are ‘compensated’ by the constitutive parameters of the
grains, so that all the schemes provide a good representation of the variation of the elastic Young
modulus with the forming pressure. It is obvious that all geometries considered are idealization
of a more complex reality; an improvement in the model would be to obtain direct information on
the constitutive laws governing the mechanical behaviour of the grains. This could be achieved
with measures at the microscale, for instance nanoindentation, which are for the moment not
available.

The computation of the Poisson’s ratio as a function of the forming pressure reported in
figure 9 shows less agreement with theoretical results. In fact, it can be noted that the qualitative
behaviour is correct, thus predicting an increase in the Poisson’s ratio with the forming pressure,
but the computed values are definitely inferior to the experimental. This is principally due to
the fact that plastic strain reached in the numerical simulations is never as large as that reached
in reality during powder compaction, so that a strong elastic release of deformation occurs at
unloading in the simulations.

Although providing practically the same elastic modulus/forming pressure relation, the
different dispositions of grains yield different forming diagrams, in other words a different
dependence of density of the greens on the forming pressure, as shown in figure 10. Coherently
with results reported in figure 5 of Part I of this study (upper part, C&E fitting), the curves in
the figure has been obtained, by assuming a limit grain density ρ∞ equal to 2500 kg m−3.

This figure shows that the best models are the square (two dimensional) and the 3D Hexagonal
packings, while results from the 2D Hexagonal and cubic packings are less accurate.
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Figure 8: Simulated evolution of the elastic Young modulus with the forming pressure for a ceramic powder
idealized as three-dimensional cubic and hexagonal packings of elastoplastic spheres. The material
properties of the grains have been selected differently (table 1) for the different packing schemes to
obtain a best fit of the experimental results. The shapes of the plastically deformed grains are reported
at different stages of forming.
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Figure 9: Simulated Poisson’s ratio as a function of the forming pressure during compaction. The ceramic powder
is idealized as two-dimensional square and hexagonal packings of elastoplastic cylinders. The material
properties of the grains are the same used for the evaluation of the elastic modulus.
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Figure 10: Evolution of the unit cell density as a function of the forming pressure.
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Figure 11: Simulated evolution of the elastic Young modulus with the density for a ceramic powder idealized as
three-dimensional cubic and hexagonal packings of elastoplastic spheres. The material properties of
the grains have been selected differently (table 1) for the different packing schemes to obtain a best fit
of the experimental results.

The same conclusion can be drawn from figure 11, where the simulated evolution of the elastic
Young modulus E with the density is reported. Here the micromechanical modelling shows a
qualitative agreement and confirms the linear dependence found in Part I of this study.

The evoulution of the Poisson’s ratio with the density, reported in figure 12 shows again only
a qualitative agreement with the experimental data and a linear behaviour, but the discrepancy
already visible in figure 9 is again found.

In conclusion, it can be pointed out that the micromechanical approach fully confirms the
experimental finding that the elastic stiffness increases with the density of the green, even if
there is only a partial quantitative agreement with the experimental data.

5 Conclusions

A micromechanical approach has been developed to explain the increase of elastic stiffness
with the density of the greens observed during forming of ceramic powders (experiments have
been reported in Part I of this study). Although the mechanical characteristics of the single
granule are not known, a reasonable elastoplastic model for this has been employed, so that it has
been possible to consider idealized 2D and 3D geometrical configurations of grains (represented
as circular cylinders or spheres) and to load and unload a representative unit cell. In this way, the

9

http://dx.doi.org/10.1016/j.jeurceramsoc.2016.02.013


Published in Journal of the European Ceramic Society 36 (2016) 2169-2174; doi:10.1016/j.jeurceramsoc.2016.02.013

1000 1200 1400 1600 1800 2000 2200 2400
0.04

0.06

0.08

0.10

0.12

0.14

0.16

Density [kg/m3]

Po
iss

on
’s

ra
tio

ν

Square packing
2D Hexagonal packing
Cubic packing
3D Hexagonal packing

Figure 12: Simulated evolution of the Poisson’s ratio ν with the density for a ceramic powder idealized as three-
dimensional cubic and hexagonal packings of elastoplastic spheres. The material properties of the
grains have been selected differently (table 1) for the different packing schemes to obtain a best fit of
the experimental results.

variation with forming pressure was determined of elastic modulus, Poisson’s ratio, and density.
It has been shown that the micromechanical analysis can explain both qualitatively and

quantitatively the increase of the Young modulus with forming pressure, while the behaviour of
the Poisson’s ratio is only qualitatively confirmed. Moreover, a validation is provided for the
linear dependence of the two elastic parameters on the relative density of the material (found in
Part I of this study).
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