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external dissipation

Mirko Tommasinia, Oleg N. Kirillova,b, Diego Misseronia, Davide Bigonia
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Abstract

Elastic structures loaded by nonconservative positional forces are prone to instabilities in-
duced by dissipation: it is well-known in fact that internal viscous damping destabilizes the
marginally stable Ziegler’s pendulum and Pflüger column (of which the Beck’s column is a
special case), two structures loaded by a tangential follower force. The result is the so-called
‘destabilization paradox’, where the critical force for flutter instability decreases by an order
of magnitude when the coefficient of internal damping becomes infinitesimally small. Until
now external damping, such as that related to air drag, is believed to provide only a stabi-
lizing effect, as one would intuitively expect. Contrary to this belief, it will be shown that
the effect of external damping is qualitatively the same as the effect of internal damping,
yielding a pronounced destabilization paradox. Previous results relative to destabilization by
external damping of the Ziegler’s and Pflüger’s elastic structures are corrected in a definitive
way leading to a new understanding of the destabilizating role played by viscous terms.

Keywords: Pflüger column, Beck column, Ziegler destabilization paradox, external
damping, follower force, mass distribution

1. Introduction

1.1. A premise: the Ziegler destabilization paradox

In his pioneering work Ziegler (1952) considered asymptotic stability of a two-linked
pendulum loaded by a tangential follower force P , as a function of the internal damping in
the viscoelastic joints connecting the two rigid and weightless bars (both of length l, Fig.
1(c)). The pendulum carries two point masses: the mass m1 at the central joint and the
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mass m2 mounted at the loaded end of the pendulum. The follower force P is always aligned
with the second bar of the pendulum, so that its work is non-zero along a closed path, which
provides a canonical example of a nonconservative positional force.

For two non-equal masses (m1 = 2m2) and null damping, Ziegler found that the pendulum
is marginally stable and all the eigenvalues of the 2× 2 matrix governing the dynamics are
purely imaginary and simple, if the load falls within the interval 0 ≤ P < P−u , where

P−u =

(
7

2
−
√

2

)
k

l
≈ 2.086

k

l
, (1)

and k is the stiffness coefficient, equal for both joints. When the load P reaches the value
P−u , two imaginary eigenvalues merge into a double one and the matrix governing dynamics
becomes a Jordan block. With the further increase of P this double eigenvalue splits into
two complex conjugate. The eigenvalue with the positive real part corresponds to a mode
with an oscillating and exponentially growing amplitude, which is called flutter, or oscilla-
tory, instability. Therefore, P = P−u marks the onset of flutter in the undamped Ziegler’s
pendulum.

When the internal linear viscous damping in the joints is taken into account, Ziegler
found another expression for the onset of flutter: P = Pi, where

Pi =
41

28

k

l
+

1

2

c2i
m2l3

, (2)

and ci is the damping coefficient, assumed to be equal for both joints. The peculiarity of
Eq. (2) is that in the limit of vanishing damping, ci −→ 0, the flutter load Pi tends to
the value 41/28 k/l ≈ 1.464 k/l, considerably lower than that calculated when damping is
absent from the beginning, namely, the P−u given by Eq. (1). This is the so-called ‘Ziegler’s
destabilization paradox’ (Ziegler, 1952; Bolotin, 1963).

The reason for the paradox is the existence of the Whitney umbrella singularity on
the boundary of the asymptotic stability domain of the dissipative system (Bottema, 1956;
Krechetnikov and Marsden, 2007; Kirillov and Verhulst, 2010)3.

In structural mechanics, two types of viscous dampings are considered: (i.) one, called
‘internal’, is related to the viscosity of the structural material, and (ii.) another one, called
‘external’, is connected to the presence of external actions, such as air drag resistance during

3In the vicinity of this singularity, the boundary of the asymptotic stability domain is a ruled surface
with a self-intersection, which corresponds to a set of marginally stable undamped systems. For a fixed
damping distribution, the convergence to the vanishing damping case occurs along a ruler that meets the
set of marginally stable undamped systems at a point located far from the undamped instability threshold,
yielding the singular flutter onset limit for almost all damping distributions. Nevertheless, there exist
particular damping distributions that, if fixed, allow for a smooth convergence to the flutter threshold of
the undamped system in case of vanishing dissipation (Bottema, 1956; Bolotin, 1963; Banichuk et al., 1989;
Kirillov and Verhulst, 2010; Kirillov, 2013).
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oscillations. These two terms enter the equations of motion of an elastic rod as proportional
respectively to the fourth spatial derivative of the velocity and to the velocity of the points
of the elastic line.

Of the two dissipative terms only the internal viscous damping is believed to yield the
Ziegler destabilization paradox (Bolotin, 1963; Bolotin and Zhinzher, 1969; Andreichikov
and Yudovich, 1974).

1.2. A new, destabilizing role for external damping

Differently from internal damping, the role of external damping is commonly believed to
be a stabilizing factor, in an analogy with the role of stationary damping in rotor dynamics
(Bolotin, 1963; Crandall, 1995). A full account of this statement together with a review of
the existing results is provided in Appendix A.

Since internal and external damping are inevitably present in any experimental realization
of the follower force (Saw and Wood, 1975; Sugiyama et al., 1995; Bigoni and Noselli, 2011), it
becomes imperative to know how these factors affect the flutter boundary of both the Pflüger
column and of the Ziegler pendulum with arbitrary mass distribution. These structures are
fully analyzed in the present article, with the purpose of showing: (i.) that external damping
is a destabilizing factor, which leads to the destabilization paradox for all mass distributions;
(ii.) that surprisingly, for a finite number of particular mass distributions, the flutter loads
of the externally damped structures converge to the flutter load of the undamped case (so
that only in these exceptional cases the destabilizing effect is not present); and (iii.) that
the destabilization paradox is more pronounced in the case when the mass of the column or
pendulum is smaller then the end mass.

Taking into account also the destabilizing role of internal damping, the results presented
in this article demonstrate a completely new role of external damping as a destabilizing
effect and suggest that the Ziegler destabilization paradox has a much better chance of being
observed in the experiments with both discrete and continuous nonconservative systems than
was previously believed.

2. Ziegler’s paradox due to vanishing external damping

The linearized equations of motion for the Ziegler pendulum (Fig. 1(c)), made up of two
rigid bars of length l, loaded by a follower force P , when both internal and external damping
are present, have the form (Plaut and Infante, 1970; Plaut, 1971)

Mẍ + ciDiẋ + ceDeẋ + Kx = 0, (3)

where a superscript dot denotes time derivative and ci and ce are the coefficients of internal
and external damping, respectively, in front of the corresponding matrices Di and De

Di =

(
2 −1
−1 1

)
, De =

l3

6

(
8 3
3 2

)
, (4)
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and M and K are respectively the mass and the stiffness matrices, defined as

M =

(
m1l

2 +m2l
2 m2l

2

m2l
2 m2l

2

)
, K =

(
−Pl + 2k P l − k

−k k

)
, (5)

in which k is the elastic stiffness of both viscoelastic springs acting at the hinges.
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Figure 1: (a) The (dimensionless) tangential force F , shown as a function of the (transformed via cotα =
m1/m2) mass ratio α, represents the flutter domain of (dashed/red line) the undamped, or ‘ideal’, Ziegler
pendulum and the flutter boundary of the dissipative system in the limit of vanishing (dot-dashed/green
line) internal and (continuous/blue line) external damping. (b) Discrepancy ∆F between the critical flutter
load for the ideal Ziegler pendulum and for the same structure calculated in the limit of vanishing external
damping. The discrepancy quantifies the Ziegler’s paradox.

Assuming a time-harmonic solution to the Eq. (3) in the form x = ueσt and introducing
the non-dimensional parameters

λ =
σl

k

√
km2, E = ce

l2√
km2

, B =
ci

l
√
km2

, F =
Pl

k
, µ =

m2

m1

, (6)

an eigenvalue problem is obtained, which eigenvalues λ are the roots of the characteristic
polynomial

p(λ) = 36λ4 + 12(15Bµ+ 2Eµ+ 3B + E)λ3 +

(36B2µ+ 108BEµ+ 7E2µ− 72Fµ+ 180µ+ 36)λ2 +

6µ(−5EF + 12B + 18E)λ+ 36µ. (7)
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In the undamped case, when B = 0 and E = 0, the pendulum is stable, if 0 ≤ F < F−u ,
unstable by flutter, if F−u ≤ F ≤ F+

u , and unstable by divergence, if F > F+
u , where

F±u (µ) =
5

2
+

1

2µ
± 1
√
µ
. (8)

In order to plot the stability map for all mass distributions 0 ≤ µ < ∞, a parameter
α ∈ [0, π/2] is introduced, so that cotα = µ−1 and hence

F±u (α) =
5

2
+

1

2
cotα±

√
cotα. (9)

The curves (9) form the boundary of the flutter domain of the undamped, or ‘ideal’,
Ziegler’s pendulum shown in Fig. 1(a) (red/dashed line) in the load versus mass distribution
plane (Oran, 1972; Kirillov, 2011). The smallest flutter load F−u = 2 corresponds to m1 = m2,
i.e. to α = π/4. When α equals π/2, the mass at the central joint vanishes (m1 = 0) and
F−u = F+

u = 5/2. When α equals arctan (0.5) ≈ 0.464, the two masses are related as
m1 = 2m2 and F−u = 7/2−

√
2.

In the case when only internal damping is present (E = 0) the Routh-Hurwitz criterion
yields the flutter threshold as (Kirillov, 2011)

Fi(µ,B) =
25µ2 + 6µ+ 1

4µ(5µ+ 1)
+

1

2
B2. (10)

For µ = 0.5 Eq. (10) reduces to Ziegler’s formula (2). The limit for vanishing internal
damping is

lim
B→0

Fi(µ,B) = F 0
i (µ) =

25µ2 + 6µ+ 1

4µ(5µ+ 1)
. (11)

The limit F 0
i (µ) of the flutter boundary at vanishing internal damping is shown in green in

Fig. 1(a). Note that F 0
i (0.5) = 41/28 and F 0

i (∞) = 5/4. For 0 ≤ µ <∞ the limiting curve
F 0
i (µ) has no common points with the flutter threshold F−u (µ) of the ideal system, which

indicates that the internal damping causes the Ziegler destabilization paradox for every mass
distribution.

In a route similar to the above, by employing the Routh-Hurwitz criterion, the critical
flutter load of the Ziegler pendulum with the external damping Fe(µ,E) can be found

Fe(µ,E) =
122µ2 − 19µ+ 5

5µ(8µ− 1)
+

7(2µ+ 1)

36(8µ− 1)
E2

− (2µ+ 1)

√
35E2µ(35E2µ− 792µ+ 360) + 1296(281µ2 − 130µ+ 25)

180µ(8µ− 1)

and its limit calculated when E → 0, which provides the result

F 0
e (µ) =

122µ2 − 19µ+ 5− (2µ+ 1)
√

281µ2 − 130µ+ 25

5µ(8µ− 1)
. (12)
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The limiting curve (12) is shown in blue in Fig. 1(a). It has a minimum minµ F
0
e (µ) =

−28 + 8
√

14 ≈ 1.933 at µ = (31 + 7
√

14)/75 ≈ 0.763.
Remarkably, for almost all mass ratios, except two (marked as A and C in Fig. 1(a)),

the limit of the flutter load F 0
e (µ) is below the critical flutter load F−u (µ) of the undamped

system. It is therefore concluded that external damping causes the discontinuous decrease in
the critical flutter load exactly as it happens when internal damping vanishes. Qualitatively,
the effect of vanishing internal and external damping is the same. The only difference is
the magnitude of the discrepancy: the vanishing internal damping limit is larger than the
vanishing external damping limit, see Fig. 1(b), where ∆F (µ) = Fe(µ)− F−u (µ) is plotted.
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Figure 2: Analysis of the Ziegler pendulum with fixed mass ratio, µ = m2/m1 = 1/2: (a) contours of the
flutter boundary in the internal/external damping plane, (B,E), and (b) critical flutter load as a function
of the external damping E (continuous/blue curve) along the null internal damping line, B = 0, and (dot-
dashed/orange curve) along the line B =

(
8/123 + 5

√
2/164

)
E.

For example, ∆F ≈ −0.091 at the local minimum for the discrepancy, occurring at the
point B with α ≈ 0.523. The largest finite drop in the flutter load due to external damping
occurs at α = π/2, marked as point D in Fig. 1(a,b):

∆F =
11

20
− 1

20

√
281 ≈ −0.288. (13)

For comparison, at the same value of α, the flutter load drops due to internal damping of
exactly 50%, namely, from 2.5 to 1.25, see Fig. 1(a,b).

As a particular case, for the mass ratio µ = 1/2, considered by Plaut and Infante (1970)
and Plaut (1971), the following limit flutter load is found

F 0
e (1/2) = 2, (14)
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Figure 3: Analysis of the Ziegler pendulum. (a) Stabilizing damping ratios β(µ) according to Eq. (19) with
the points A and C corresponding to the tangent points A and C in Fig. 1(a) and to the points A and C of
vanishing discrepancy ∆F = 0 in Fig. 1(b). (b) The limits of the flutter boundary for different damping ratios
β have: two or one or none common points with the flutter boundary (dashed/red line) of the undamped
Ziegler pendulum, respectively when β < 0.111 (continuous/blue curves), β ≈ 0.111 (continuous/black
curve), and β > 0.111 (dot-dashed/green curves).

only slightly inferior to the value for the undamped system, F−u (1/2) = 7/2 −
√

2 ≈ 2.086.
This discrepancy passed unnoticed in (Plaut and Infante, 1970; Plaut, 1971) but gives evi-
dence to the destabilizing effect of external damping. To appreciate this effect, the contours
of the flutter boundary in the (B,E) - plane are plotted in Fig. 2(a) for three different values
of F . The contours are typical of a surface with a Whitney umbrella singularity at the origin
(Kirillov and Verhulst, 2010). At F = 7/2−

√
2 the stability domain assumes the form of a

cusp with a unique tangent line, B = βE, at the origin, where

β =
8

123
+

5

164

√
2 ≈ 0.108. (15)

For higher values of F the flutter boundary is displaced from the origin, Fig. 2(a), which
indicates the possibility of a continuous increase in the flutter load with damping. Indeed,
along the direction in the (B,E) - plane with the slope (15) the flutter load increases as

F (E) =
7

2
−
√

2 +

(
47887

242064
+

1925

40344

√
2

)
E2 + o(E2), (16)

see Fig. 2(b), and monotonously tends to the undamped value as E → 0. On the other
hand, along the direction in the (B,E) - plane specified by the equation B = 0, the following
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condition is obtained

F (E) = 2 +
14

99
E2 + o(E2), (17)

see Fig. 2(b), with the convergence to a lower value F = 2 as E → 0.
In general, the limit of the flutter load along the line B = βE when E → 0 is

F (β) =
504β2 + 1467β + 104− (4 + 21β)

√
576β2 + 1728β + 121

30(1 + 14β)
≤ 7

2
−
√

2, (18)

an equation showing that for almost all directions the limit is lower than the ideal flutter
load. The limits only coincide in the sole direction specified by Eq. (15), which is different
from the E-axis, characterized by β = 0. As a conclusion, pure external damping yields the
destabilization paradox even at µ = 1/2, which was unnoticed in (Plaut and Infante, 1970;
Plaut, 1971).

In the limit of vanishing external (E) and internal (B) damping, a ratio of the two
β = B/E exists for which the critical load of the undamped system is attained, so that the
Ziegler’s paradox does not occur. This ratio can therefore be called ‘stabilizing’, it exists for
every mass ratio µ = m2/m1, and is given by the expression

β(µ) = −1

3

(10µ− 1)(µ− 1)

25µ2 + 6µ+ 1
+

1

12

(13µ− 5)(3µ+ 1)

25µ2 + 6µ+ 1
µ−1/2. (19)

Eq. (19) reduces for µ = 1/2 to Eq. (15) and gives β = −2/15 in the limit µ → ∞. With
the damping ratio specified by Eq. (19) the critical flutter load has the following Taylor
expansion near E = 0:

F (E, µ) = F−u (µ) + β(µ)
(5µ+ 1)(41µ+ 7)

6(25µ2 + 6µ+ 1)
E2

+
636µ3 + 385µ2 − 118µ+ 25

288(25µ2 + 6µ+ 1)µ
E2 + o(E2), (20)

yielding Eq. (16) when µ = 1/2. Eq. (20) shows that the flutter load reduces to the
undamped case when E = 0 (called ‘ideal’ in the figure).

When the stabilizing damping ratio is null, β = 0, convergence to the critical flutter load
of the undamped system occurs by approaching the origin in the (B,E) - plane along the E
- axis. The corresponding mass ratio can be obtained finding the roots of the function β(µ)
defined by Eq. (19). This function has only two roots for 0 ≤ µ <∞, one at µ ≈ 0.273 (or
α ≈ 0.267, marked as point A in Fig. 3(a)) and another at µ ≈ 2.559 (or α ≈ 1.198, marked
as point C in Fig. 3(a)).

Therefore, if β = 0 is kept in the limit when the damping tends to zero, the limit of the
flutter boundary in the load versus mass ratio plane will be obtained as a curve showing
two common points with the flutter boundary of the undamped system, exactly at the mass

8
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Figure 4: Analysis of the Ziegler pendulum with fixed mass ratio, µ ≈ 2.559: (a) contours of the flutter
boundary in the internal/external damping plane, (B,E), and (b) critical flutter load as a function of external
damping E (continuous/blue curve) along the null internal damping line, B = 0.

ratios corresponding to the points denoted as A and C in Fig. 1(a), respectively characterized
by F ≈ 2.417 and F ≈ 2.070.

If for instance the mass ratio at the point C is considered and the contour plots are
analyzed of the flutter boundary in the (B,E) - plane, it can be noted that at the critical
flutter load of the undamped system, F ≈ 2.07, the boundary evidences a cusp with only
one tangent coinciding with the E axis, Fig. 4(a). It can be therefore concluded that at the
mass ratio µ ≈ 2.559 the external damping alone has a stabilizing effect and the system does
not demonstrate the Ziegler paradox due to small external damping, see Fig. 4(b), where
the the flutter load F (E) is shown.

Looking back at the damping matrices (4) one may ask, what is the property of the
damping operator which determines its stabilizing or destabilizing character. The answer to
this question (provided by (Kirillov and Seyranian, 2005b; Kirillov, 2013) via perturbation
of multiple eigenvalues) involves all the three matrices M (mass), D (damping), and K
(stiffness). In fact, the distributions of mass, stiffness, and damping should be related in a
specific manner in order that the three matrices (M, D, K) have a stabilizing effect (see
Appendix B for details).

3. Ziegler’s paradox for the Pflüger column with external damping

The Ziegler’s pendulum is usually considered as the two-dimensional analog of the Beck
column, which is a cantilevered (visco)elastic rod loaded by a tangential follower force (Beck,
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1952). Strictly speaking, this analogy is not correct because the Beck column has a different
mass distribution (the usual mass distribution of the Ziegler pendulum is m1 = 2m2) and this
mass distribution yields different limiting behavior of the stability threshold (Section 2). For
this reason, in order to judge the stabilizing or destabilizing influence of external damping in
the continuous case and to compare it with the case of the Ziegler pendulum, it is correct to
consider the Beck column with the point mass at the loaded end, in other words the so-called
‘Pflüger column’ (Pflüger, 1955).

A viscoelastic column of length l, made up of a Kelvin-Voigt material with Young modulus
E and viscosity modulus E∗, and mass per unit length m is considered, clamped at one end
and loaded by a tangential follower force P at the other end (Fig. 5(c)), where a point mass
M is mounted.

The moment of inertia of a cross-section of the column is denoted by I and a distributed
external damping is assumed, characterized by the coefficient K.

Small lateral vibrations of the viscoelastic Pflüger column near the undeformed equilib-
rium state is described by the linear partial differential equation (Detinko, 2003)

EI
∂4y

∂x4
+ E∗I

∂5y

∂t∂x4
+ P

∂2y

∂x2
+K

∂y

∂t
+m

∂2y

∂t2
= 0, (21)

where y(x, t) is the amplitude of the vibrations and x ∈ [0, l] is a coordinate along the
column. At the clamped end (x = 0) Eq. (21) is equipped with the boundary conditions

y =
∂y

∂x
= 0, (22)

while at the loaded end (x = l), the boundary conditions are

EI
∂2y

∂x2
+ E∗I

∂3y

∂t∂x2
= 0, EI

∂3y

∂x3
+ E∗I

∂4y

∂t∂x3
= M

∂2y

∂t2
. (23)

Introducing the dimensionless quantities

ξ = x
l
, τ = t

l2

√
EI
m
, p = Pl2

EI
, µ = M

ml
,

γ = E∗

El2

√
EI
m
, k = Kl2√

mEI
(24)

and separating the time variable through y(ξ, τ) = lf(ξ) exp(λτ), the dimensionless bound-
ary eigenvalue problem is obtained

(1 + γλ)∂4ξf + p∂2ξf + (kλ+ λ2)f = 0,

(1 + γλ)∂2ξf(1) = 0,

(1 + γλ)∂3ξf(1) = µλ2f(1),

f(0) = ∂ξf(0) = 0, (25)
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defined on the interval ξ ∈ [0, 1].
A solution to the boundary eigenvalue problem (25) was found by Pedersen (1977) and

Detinko (2003) to be

f(ξ) = A(cosh(g2ξ)− cos(g1ξ)) +B(g1 sinh(g2ξ)− g2 sin(g1ξ)) (26)

with

g21,2 =

√
p2 − 4λ(λ+ k)(1 + γλ)± p

2(1 + γλ)
. (27)

Imposing the boundary conditions (25) on the solution (26) yields the characteristic equation
∆(λ) = 0 needed for the determination of the eigenvalues λ, where

∆(λ) = (1 + γλ)2A1 − (1 + γλ)A2µλ
2 (28)

and

A1 = g1g2
(
g41 + g42 + 2g21g

2
2 cosh g2 cos g1 + g1g2(g

2
1 − g22) sinh g2 sin g1

)
,

A2 = (g21 + g22) (g1 sinh g2 cos g1 − g2 cosh g2 sin g1) . (29)
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Transforming the mass ratio parameter in Eq. (28) as µ = tanα with α ∈ [0, π/2] allows
the exploration of all possible ratios between the end mass and the mass of the column
covering the mass ratios µ from zero (α = 0) to infinity (α = π/2). The former case, without
end mass, corresponds to the Beck column, whereas the latter corresponds to a weightless
rod with an end mass, which is known as the ‘Dzhanelidze column’ (Bolotin, 1963).

It is well-known that the undamped Beck column loses its stability via flutter at p ≈
20.05 (Beck, 1952). In contrast, the undamped Dzhanelidze’s column loses its stability via
divergence at p ≈ 20.19, which is the root of the equation tan

√
p =

√
p (Bolotin, 1963).

These values, corresponding to two extreme situations, are connected by a marginal stability
curve in the (p, α)-plane that was numerically evaluated in (Pflüger, 1955; Bolotin, 1963;
Oran, 1972; Sugiyama et al., 1976; Pedersen, 1977; Ryu and Sugiyama, 2003). The instability
threshold of the undamped Pflüger column is shown in Fig. 5 as a dashed/red curve.

16 16 16 16

3��� � 3�5� 7�
0

�
8 84 2

8.0

7.0

10.0

9.0

11.0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

20.0

21.0

22.0

23.0

24.0

25.0

STABILITY

STABILITY

�=10 , k=0�¹⁰

�=0.050, k=0

�=0.100, k=0

k=5, =0�

k=10 , =0�¹⁰ �

k=10, =0�

k 10��= �¹⁰

�

p

k 0.010��� �=

Figure 6: Evolution of the marginal stability curve for the Pflüger column in the (α, p) - plane in the case
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For every fixed value α ∈ [0, π/2), the undamped column loses stability via flutter when
an increase in p causes the imaginary eigenvalues of two different modes to approach each
other and merge into a double eigenvalue with one eigenfunction. When p lies above the
dashed/red curve, the double eigenvalue splits into two complex eigenvalues, one with the
positive real part, which determines a flutter unstable mode.

At α = π/2 the stability boundary of the undamped Pflüger column has a vertical tangent
and the type of instability becomes divergence (Bolotin, 1963; Oran, 1972; Sugiyama et al.,
1976).

Setting k = 0 in Eq. (28) the location in the (α, p)-plane of the marginal stability curves
can be numerically found for the viscoelastic Pflüger column without external damping, but
for different values of the coefficient of internal damping γ, Fig. 6(a). The thresholds tend to
a limit which does not share common points with the stability boundary of the ideal column,
as shown in Fig. 5(a), where this limit is set by the dot-dashed/green curve.

The limiting curve calculated for γ = 10−10 agrees well with that obtained for γ = 10−3

in (Sugiyama et al., 1995; Ryu and Sugiyama, 2003). At the point α = 0, the limit value of
the critical flutter load when the internal damping is approaching zero equals the well-known
value for the Beck’s column, p ≈ 10.94. At α = π/4 the limiting value becomes p ≈ 7.91,
while for the case of the Dzhanelidze column (α = π/2) it becomes p ≈ 7.49.

An interesting question is what is the limit of the stability diagram for the Pflüger column
in the (α, p)-plane when the coefficient of internal damping is kept null (γ = 0), while the
coefficient of external damping k tends to zero.

The answer to this question was previously known only for the Beck column (α = 0), for
which it was established, both numerically (Bolotin and Zhinzher, 1969; Plaut and Infante,
1970) and analytically (Kirillov and Seyranian, 2005a), that the flutter threshold of the
externally damped Beck’s column is higher than that obtained for the undamped Beck’s
column (tending to the ideal value p ≈ 20.05, when the external damping tends to zero). This
very particular example was at the basis of the common and incorrect opinion (maintained
for decades until now) that the external damping is only a stabilizing factor, even for non-
conservative loadings. Perhaps for this reason the effect of the external damping in the
Pflüger column has, so far, simply been ignored.

The evolution of the flutter boundary for γ = 0 and k tending to zero is illustrated by the
blue curves in Fig. 6. It can be noted that the marginal stability boundary tends to a limiting
curve which has two common tangent points with the stability boundary of the undamped
Pflüger column, Fig. 5(b). One of the common points, at α = 0 and p ≈ 20.05, marked as
point A, corresponds to the case of the Beck column. The other corresponds to α ≈ 0.516 and
p ≈ 16.05, marked as point B. Only for these two ‘exceptional’ mass ratios the critical flutter
load of the externally damped Pflüger column coincides with the ideal value when k → 0.
Remarkably, for all other mass ratios the limit of the critical flutter load for the vanishing
external damping is located below the ideal value, which means that the Pflüger column fully
demonstrates the Ziegler destabilization paradox due to vanishing external damping, exactly
as it does in the case of the vanishing internal damping, see Fig. 5(a), where the two limiting
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curves are compared.
Note that the discrepancy in case of vanishing external damping is smaller than in case

of vanishing internal damping, in accordance with the analogous result that was established
in Section 2 for the Ziegler pendulum with arbitrary mass distribution. As for the discrete
case, also for the Pflüger column the flutter instability threshold calculated in the limit when
the external damping tends to zero has only two common points with the ideal marginal
stability curve. The discrepancy is the most pronounced for the case of Dzhanelidze column
at α = π/2, where the critical load drops from p ≈ 20.19 in the ideal case to p ≈ 16.55 in
the case of vanishing external damping.

4. Conclusions

Since the finding of the Ziegler’s paradox for structures loaded by nonconservative follower
forces, internal damping (due to material viscosity) was considered a destabilizing factor,
while external damping (due for instance to air drag resistance) was believed to merely
provide a stabilization. This belief originates from results obtained only for the case of Beck’s
column, which does not carry an end mass. This mass is present in the case of the Pflüger’s
column, which was never analyzed before from the point of view of the Ziegler paradox. A
revisitation of the Ziegler’s pendulum and the analysis of the Pflüger column has revealed
that the Ziegler destabilization paradox occurs as related to the vanishing of the external
damping, no matter what is the ratio between the end mass and the mass of the structure.
Results presented in this article clearly show that the destabilizing role of external damping
was until now misunderstood, and that experimental proof of the destabilization paradox
in a mechanical laboratory is now more plausible than previously thought. Moreover, the
fact that external damping plays a destabilizing role may have important consequences in
structural design and this opens new perspectives for energy harvesting devices.
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Appendix A. - The stabilizing role of external damping and the destabilizing
role of internal damping

A critical review of the relevant literature is given in this Appendix, with the purpose of
explaining the historical origin of the misconception that the external damping introduces a
mere stabilizing effect for structures subject to flutter instability.

Plaut and Infante (1970) considered the Ziegler pendulum with m1 = 2m2, without
internal damping (in the joints), but subjected to an external damping proportional to the
velocity along the rigid rods of the double pendulum4. In this system the critical flutter load
increases with an increase in the external damping, so that they presented a plot showing
that the flutter load converges to a value which is very close to P−u . However, they did not
calculate the critical value in the limit of vanishing external damping, which would have
revealed a value slightly smaller than the value corresponding to the undamped system5.
In a subsequent work, Plaut (1971) confirmed his previous result and demonstrated that
internal damping with equal damping coefficients destabilizes the Ziegler pendulum, whereas
external damping has a stabilizing effect, so that it does not lead to the destabilization
paradox. Plaut (1971) reports a stability diagram (in the external versus internal damping
plane) that implicitly indicates the existence of the Whitney umbrella singularity on the
boundary of the asymptotic stability domain. These conclusions agreed with other studies
on the viscoelastic cantilevered Beck’s column (Beck, 1952), loaded by a follower force which
displays the paradox only for internal Kelvin-Voigt damping (Bolotin and Zhinzher, 1969;
Plaut and Infante, 1970; Andreichikov and Yudovich, 1974; Kirillov and Seyranian, 2005a)
and were supported by studies on the abstract settings (Done, 1973; Walker, 1973; Kirillov
and Seyranian, 2005b), which have proven the stabilizing character of external damping,
assumed to be proportional to the mass (Bolotin, 1963; Zhinzher, 1994).

The Pflüger column [a generalization of the Beck problem in which a concentrated mass
is added to the loaded end, Pflüger (1955), see also Sugiyama et al. (1976), Pedersen (1977),
and Chen and Ku (1992)] was analyzed by Sugiyama et al. (1995) and Ryu and Sugiyama
(2003), who numerically found that the internal damping leads to the destabilization paradox
for all ratios of the end mass to the mass of the column. The role of external damping was
investigated only by Detinko (2003) who concludes that large external damping provides a
stabilizing effect.

The stabilizing role of external damping was questioned only in the work by Panovko
and Sorokin (1987), in which the Ziegler pendulum and the Beck column were considered
with a dash-pot damper attached to the loaded end (a setting in which the external damper
can be seen as something different than an air drag, but as merely an additional structural

4Note that different mass distributions were never analyzed in view of external damping effect. In the
absence of damping, stability investigations were carried out by Oran (1972) and Kirillov (2011).

5In fact, the flutter load of the externally damped Ziegler pendulum with m1 = 2m2, considered by Plaut
and Infante (1970) and Plaut (1971) tends to the value P = 2 which is smaller than P−

u ≈ 2.086, therefore
revealing the paradox.
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element, as suggested by Zhinzher (1994)). In fact the dash-pot was shown to always yield
the destabilization paradox, even in the presence of internal damping, no matter what the
ratio is between the coefficients of internal and external damping (Kirillov and Seyranian,
2005c; Kirillov, 2013).

In summary, there is a well-established opinion that external damping stabilizes struc-
tures loaded by nonconservative positional forces.

Appendix B. - A necessary condition for stabilization of a general 2 d.o.f.
system

Kirillov and Seyranian (2005b) considered the stability of the system

Mẍ + εDẋ + Kx = 0, (A.1)

where ε > 0 is a small parameter and M = MT , D = DT , and K 6= KT are real matrices of
order n. In the case n = 2, the characteristic polynomial of the system (A.1),

q(σ, ε) = det(Mσ2 + εDσ + K),

can be written by means of the Leverrier algorithm (adopted for matrix polynomials by
Wang and Lin (1993)) in a compact form:

q(σ, ε) = det Mσ4 + εtr(D∗M)σ3 + (tr(K∗M) + ε2 det D)σ2 + εtr(K∗D)σ + det K, (A.2)

where D∗ = D−1 det D and K∗ = K−1 det K are adjugate matrices and tr denotes the trace
operator.

Let us assume that at ε = 0 the undamped system (A.1) with n = 2 degrees of freedom
be on the flutter boundary, so that its eigenvalues are imaginary and form a double complex-
conjugate pair σ = ±iω0 of a Jordan block. In these conditions, the real critical frequency
ω0 at the onset of flutter follows from q(σ, 0) in the closed form (Kirillov, 2013)

ω2
0 =

√
det K

det M
. (A.3)

A dissipative perturbation εD causes splitting of the double eigenvalue iω0, which is
described by the Newton-Puiseux series σ(ε) = iω0 ± i

√
hε+ o(ε), where the coefficient h is

determined in terms of the derivatives of the polynomial q(σ, ε) as

h :=
dq

dε

(
1

2

∂2q

∂σ2

)−1∣∣∣∣∣
ε=0, σ=iω0

=
tr(K∗D)− ω2

0tr(D∗M)

4iω0 det M
. (A.4)

Since the coefficient h is imaginary, the double eigenvalue iω0 splits generically into two com-
plex eigenvalues, one of them with the positive real part yielding flutter instability (Kirillov
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and Seyranian, 2005b). Consequently, h = 0 represents a necessary condition for εD to be
a stabilizing perturbation (Kirillov and Seyranian, 2005b).

In the case of the system (3), with matrices (5), it is readily obtained

ω2
0 =

k

l2
√
m1m2

. (A.5)

Assuming D = Di, eq. (A.4) and the representations (5) and (A.5) yield

h = hi :=
i

m1l2
5µ− 2

√
µ+ 1

4µ
, (A.6)

so that the equation hi = 0 has as solution the complex-conjugate pair µ = (−3 ± 4i)/25.
Therefore, for every real mass distribution µ ≥ 0 the dissipative perturbation with the matrix
D = Di of internal damping results to be destabilizing.

Similarly, eq. (A.4) with D = De and representations (A.5), (5), and F = F−u (µ) yield

h = he :=
il

48m1

8µ2 − 11
√
µ3 − 6µ+ 5

√
µ

µ2
, (A.7)

so that the constraint he = 0 is satisfied only by the two following real values of µ

µA ≈ 0.273, µC ≈ 2.559. (A.8)

The mass distributions (A.8) correspond exactly to the points A and C in Fig. 1, which are
common for the flutter boundary of the undamped system and for that of the dissipative
system in the limit of vanishing external damping. Consequently, the dissipative perturbation
with the matrix D = De of external damping can have a stabilizing effect for only two
particular mass distributions (A.8). Indeed, as it is shown in the present article, the external
damping is destabilizing for every µ ≥ 0, except for µ = µA and µ = µC .

Consequently, the stabilizing or destabilizing effect of damping with the given matrix D
is determined not only by its spectral properties, but also by how it ‘interacts’ with the mass
and stiffness distributions. The condition which selects possibly stabilizing triples (M, D,
K) in the general case of n = 2 degrees of freedom is therefore the following

tr(K∗D) = ω2
0tr(D∗M). (A.9)
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