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A B S T R A C T

An elastic rod, straight in its undeformed state, has a mass attached at one end and a variable
length, due to a constraint at the other end by a frictionless sliding sleeve. The constraint is
arranged with the sliding direction parallel to a gravity field, in a way that the rod can freely
slip inside of the sleeve, when the latter is not moving. In this case, the free fall of the mass
continues until the rod is completely injected into the constraint. However, when the sliding
sleeve is subject to a harmonic transverse vibration, it is shown that the fall of the mass and the
rod injection are hindered by the presence of a configurational force developing at the sliding
sleeve and acting oppositely to gravity. During the dynamic motion, such a configurational
force is varying in time because it is associated with the variable bending moment at the sleeve
entrance. It is (experimentally, analytically, and numerically) demonstrated that, in addition
to the states of complete injection or ejection of the elastic rod (for which the mass falls
down or is thrown out), a stable sustained oscillation around a finite height can be realized.
This ‘suspended motion’ is the signature of a new attractor, that arises by the constraint
oscillation. This behaviour shares similarities with parametric oscillators, as for instance the
Kapitza inverted pendulum. However, differently from the classical parametric oscillators, the
‘suspended’ configuration of the rod violates equilibrium and the stabilization occurs through
a transverse mechanical input, instead of a longitudinal one. By varying the sliding sleeve
oscillation amplitude and frequency within specific sets of values, the system spontaneously
adjusts the sustained motion through a self-tuning of the rod’s external length. This self-tuning
property opens the way to the design of vibration-based devices with extended frequency range.

. Introduction

The Kapitza inverted pendulum is a famous example of a parametric oscillator showing that an unstable equilibrium configuration
or a rigid and movable structure can be dynamically stabilized through a controlled time-harmonic vibration, acting at the basis
f the pendulum and aligned parallel to the gravity (Kapitza, 1951). The aim of the present article is to disclose how a similar, but
ore complex, phenomenon can be displayed by a variable length elastic structure through a controlled time-harmonic vibration

rthogonal to the gravity direction. In particular, an elastic flexible rod is arranged in a sort of inverse pendulum configuration
Fig. 1, left), where the lower part is constrained by a (frictionless) sliding sleeve and the other end has a lumped mass attached.
n the presence of a gravitational field and in the absence of any disturbance, including any motion of the constraint, the free fall
otion would occur for the mass through the injection into the sliding sleeve of the rod, remaining undeformed. Therefore, contrary

o the Kapitza pendulum, the straight upward configuration never represents an equilibrium configuration. Despite this difference, it is
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Fig. 1. (Left) Concept drawing of the experimental setup, where an elastic rod with a lumped mass attached at its top end is inserted inside a sliding sleeve, with
direction parallel to the gravity. While the mass would simply fall down when the constraint does not move, the mass may oscillate suspended against gravity
when the constraint is sinusoidally vibrating along the horizontal direction. (Right) The suspended motion is shown through a superimposed photo sequence
and the tracked trajectory of the mass centre (green line).

shown that a transverse time-harmonic oscillation of the sliding sleeve may generate a stable periodic or quasi-periodic motion
around a finite value of the external length of the rod. In practice, this is displayed as a ‘mass swinging suspended in the air’, as
experimentally demonstrated through the photo sequence reported in Fig. 1 (right). Noteworthy, the imposed constraint vibration is
transverse to the gravity direction, marking another difference with respect to the Kapitza pendulum, where the vibration is instead
parallel.

The sustained motion shown in Fig. 1 (right), which is theoretically, numerically, and experimentally demonstrated in the
following sections, is made possible by the elastic flexibility of the rod, so that it would be impossible to be observed in a rigid
system such as the Kapitza pendulum. More specifically, when constraining a flexurally deformed rod, the sliding sleeve generates a
configurational force contrasting gravity and proportional to the square of the bending moment at the sliding sleeve entrance. This
configurational force was recently shown to act on elastic rods with variable length subject to bending (Bigoni et al., 2015; Hanna
et al., 2018; O’Reilly, 2017, 2015; Wang and Detournay, 2022), torsion (Bigoni et al., 2014), and analysed for buckling (Liakou,
2018a,b). As a result, the configurational force represents the structural counterpart of the driving force on defects, as conceptualized
in Eshelbian mechanics (Eshelby, 1999); see also a recently provided mechanical interpretation (Ballarini and Royer-Carfagni, 2016).

The dynamics of the considered structure is characterized by two stable attractors inherent to the presence of the sliding sleeve
constraint and corresponding to two possible final stages for the system, respectively associated with a vanishing and an infinite
value of the external length of the rod (Armanini et al., 2019). Indeed, the rod slips inside the sleeve when the configurational force
is too low, while it is ejected when the force is too high. In addition to these two inherent limit attractors, it is found that a third
one may arise when a harmonic transverse oscillation of the sleeve is imposed. This third attractor is associated with a finite value
for the external length of the rod, so that the mass does not simply fall down, rather, it remains suspended around a certain height.
The height value depends on (i.) the amplitude and frequency of the imposed harmonic motion, (ii.) the bending stiffness of the
rod, and (iii.) the (lumped) mass value. Roughly speaking, the height value is approximately given by the external length of the
clamped rod which would be at resonance under the same frequency of the harmonic motion imposed to the sliding sleeve.

Finally, the oscillating sliding sleeve system is shown to display self-tuning properties, consisting in the spontaneous adjustment
of the external length when the amplitude and frequency oscillation parameters are ‘relatively slowly varying’ as long as the third
attractor is stable.

Attraction to a suspended non-equilibrium configuration has never been so far observed and is proven in this article through
asymptotic solutions, numerical simulations, and the design, realization, and validation (at the Instabilities Lab of the University of
Trento) of a new experimental setup permitting control and measure of the nonlinear dynamics of an elastic rod, subject to large
rotations and, simultaneously, to configurational changes of very large amounts.
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Fig. 2. A transverse vibration 𝑢𝑔 (𝑡) = 𝑢̄𝑔 cos
(

2𝜋𝑓 𝑡
)

generates a suspended (against gravity) dynamic motion for a lumped mass 𝑚𝐿 = 130 g (tracked with green
line) attached at the end of an elastic rod. Photos taken at different instants of time are superimposed for specific values of frequency 𝑓 , showing experimental
results for two different oscillation amplitudes, 𝑢̄𝑔 = 3.5 mm (top) and 5 mm (bottom). The green part of the 𝑓 axis is associated with sustained oscillation, while
the red one with final injection.

The presented results introduce a new paradigm in nonlinear structural dynamics and may find applications for positioning tasks
in soft robotics (Alfalahi et al., 2020; Renda et al., 2021; Sipos and Várkonyi, 2020), as well as for wave mitigation devices (Lee
et al., 2018; Liu et al., 2015; Matlack et al., 2016; Wang and Bertoldi, 2012) and environmental energy harvesters (Gibus et al., 2022;
Ma et al., 2020; Yu et al., 2020), where self-tuning property can be exploited to improve efficiency and to extend the frequency
range of application.

The article is organized as follows: after the experimental evidence presented in Section 2, a nonlinear elastic model of the system
is developed in Section 3, together with an asymptotic solution. Numerical results from the integration of the nonlinear dynamics
are provided in Section 4, showing the transition from periodic to quasi-periodic motion. Finally, the presented results are validated
in Section 5 through a comparison between theoretical predictions and experimental measurements.

2. Experimental evidence of sustained motion and self-tuning of the oscillating rod

An experimental setup has been designed, manufactured, and tested (at the ‘Instabilities Lab’ of the University of Trento) with
the purpose of observing the dynamics of a rod inserted into a sliding sleeve, as sketched in Fig. 1 (left). A detailed presentation of
the experimental setup is deferred to Section 5.

The sliding sleeve is forced to sinusoidal transverse oscillations along the horizontal direction through the applied displacement
𝑢𝑔(𝑡), defined by

𝑢𝑔(𝑡) = 𝑢̄𝑔 cos
(

2𝜋𝑓 𝑡
)

, (1)

where 𝑢̄𝑔 and 𝑓 are respectively the amplitude and the frequency of the sliding sleeve oscillation, while 𝑡 is the physical time.
When partially inserted inside of the vibrating sliding sleeve, the rod is intuitively expected to either fall down (at small oscillation

amplitude or frequency) or to be ejected outside the sleeve (at high oscillation amplitude or frequency). These two behaviours do in
3
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Fig. 3. As for Fig. 2, except for a lumped mass 𝑚𝐿 = 303 g.

fact exist, but, interestingly, a third behaviour is found, in which the interplay of the configurational force generated at the sliding
sleeve entrance with the gravity force creates a sustained motion, as shown in Fig. 1 (right) and more accurately in Figs. 2 and
3, where a series of superimposed photos, with mass tracking reported with a green line, are shown at increasing frequency 𝑓 for
different lumped mass 𝑚𝐿 and oscillation amplitude 𝑢̄𝑔 values. It can be appreciated that the sustained motion occurs for a height
of the lumped mass varying with the frequency value, disclosing a self-tuning property of the system. Videos of the complete run
of the experiments shown in Figs. 2 and 3 are available as Supplementary Material.

Since the beginning of the experimental campaign it has been observed that a sustained motion is not always displayed by the
system, rather it can be achieved only within specific ranges of frequency and amplitude. With reference to the values of the lumped
mass 𝑚𝐿 = {130, 303} g, two kinds of experiments, both starting from a situation of sustained motion (held for 1 min to overcome
transient effects), have been performed:

(i) amplitude controlled experiments — the frequency 𝑓 is held fixed at a specific constant value (ranging between 2.5 and 17 Hz)
while the amplitude 𝑢̄𝑔 is decreased (with a step of 0.1 mm every 10 s) until injection, which terminates the experiment at
a recorded final amplitude, denoted as ‘critical’, 𝑢̄𝑔, 𝑐𝑟(𝑓 );

(ii) frequency controlled experiments — the amplitude 𝑢̄𝑔 is held fixed at a specific constant value (𝑢̄𝑔 = {3.5, 5}mm) while the
frequency 𝑓 is increased or decreased (with a step of 0.05 Hz every 15 s) until injection, which terminates the experiment at
a recorded final frequency, denoted as ‘critical’, 𝑓𝑐𝑟(𝑢̄𝑔).

Experiments of the type (i) lead to the results (in terms of critical amplitude 𝑢̄𝑔, 𝑐𝑟 versus frequency 𝑓 ) reported in Fig. 4, where
experimental measures for the above-mentioned two different values of lumped mass correspond to different markers (crosses for
𝑚𝐿 = 130 g, and circles for 𝑚𝐿 = 303 g). The figure shows that the sustained motion is only possible for amplitude–frequency pairs
belonging to the region above the critical curve (reported as green for 𝑚𝐿 = 130 g), while injection occurs when the pair belongs
to the region below the critical curve (reported red for 𝑚𝐿 = 130 g).

At increasing frequency, the results show an initial steep decrease of 𝑢̄𝑔, 𝑐𝑟, until a minimum is reached and a subsequent increase
is visible, up to an isolated maximum, followed by a further mild decrease (within the measured frequency range). It follows that
4
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Fig. 4. Critical amplitude 𝑢̄𝑔, 𝑐𝑟 as a function of the frequency 𝑓 (red curves). The critical curves are drawn through a linear interpolation of the critical pairs
measured through type (i) experiments for 𝑚𝐿 = 130 g (red crosses) and for 𝑚𝐿 = 303 g (red circles). The critical curve defines the transition from a sustained

otion (green region for 𝑚𝐿 = 130 g) to the rod’s final injection (red region for 𝑚𝐿 = 130 g).

he sequence of tests of type (ii) experiments in order to detect the critical frequency 𝑓𝑐𝑟 may vary from at least one to at least
hree, due to the presence of a non-unique 𝑓𝑐𝑟 for specific ranges of 𝑢̄𝑔 , as visible in the videos available as Supplementary Material.
n this case, the critical values have to be detected by monotonically decreasing and also monotonically increasing the frequency
rom different initial values. Results concerning the experiments of type (ii) are reported in Section 5, where the developed theory
s tested against the experiment to further validate the critical curves reported in Fig. 4.

. Mechanical modelling and average external length

.1. Nonlinear equations of motion

The oscillating sliding-sleeve structure is modelled as an inextensible rod of length 𝐿, straight in its undeformed configuration,
ith flexural stiffness 𝐵, and partially inserted into a sliding sleeve, Fig. 5. By introducing the curvilinear coordinate 𝑠 ∈ [0, 𝐿],

orresponding to the arc-length of the rod’s centre line, the portion of rod constrained by the sliding sleeve is defined by the set
∈ [0, 𝐿 − 𝓁(𝑡)], while the portion external to the sliding sleeve, which is the only part that can be bent, by 𝑠 ∈ [𝐿 − 𝓁(𝑡), 𝐿], being
(𝑡) the length of the rod external to the constraint. Note that the length 𝐿 of the rod is assumed to be finite, while the case of

nfinite length would deserve a different treatment. A mass 𝑚 is modelled as attached at the tip of the rod (𝑠 = 𝐿) and the sleeve is
riented in a vertical direction against gravity, defined by the acceleration 𝑔. The attached mass value 𝑚 of the theoretical model is
onsidered to be possibly different from the ‘real’ lumped mass value 𝑚𝐿 in order to account for inertial effects of the rod (having
linear mass density 𝛾), so that 𝑚 = 𝑚𝐿 + 𝛥𝑚, with 𝛥𝑚 ≥ 0. It is instrumental to consider two parallel Cartesian reference systems,

he absolute system 𝑋 − 𝑌 , with origin fixed at the mean position of the sliding sleeve entrance, and the relative system 𝑥− 𝑦, with
origin attached at the moving sliding sleeve entrance and moving with it, which is forced to harmonically oscillate through the
imposed displacement 𝑢𝑔(𝑡) (parallel to 𝑋), so that the absolute and the relative positions are related as

𝑋(𝑠, 𝑡) = 𝑥(𝑠, 𝑡) + 𝑢𝑔(𝑡), 𝑌 (𝑠, 𝑡) = 𝑦(𝑠, 𝑡). (2)

Because of the rod inextensibility, in addition to the configurational parameter 𝓁(𝑡), the deformed configuration is described through
the rotation field 𝜃(𝑠, 𝑡) measuring the counter-clockwise rotation of the rod’s tangent with respect to the undeformed state. While
the rotation is constrained to remain null within the portion of the rod inside the sliding sleeve, 𝜃(𝑠, 𝑡) = 0 for 𝑠 ∈ [0, 𝐿 − 𝓁(𝑡)], the
5
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Fig. 5. An elastic rod, of flexural stiffness 𝐵 and total length 𝐿, is partially inserted into the sliding sleeve so that the time-varying external length is 𝓁(𝑡) < 𝐿.
A mass 𝑚 is attached to the upper end of the rod, while the sliding sleeve constraint horizontally oscillates in time through the displacement 𝑢𝑔 (𝑡).

rotation has to be evaluated outside the constraint. Neglecting the distributed inertia effects, the governing equation for 𝜃(𝑠, 𝑡) is
provided by the elastica

𝐵 𝜃′′(𝑠, 𝑡) +𝑁𝑥(𝑡) cos 𝜃(𝑠, 𝑡) −𝑁𝑦(𝑡) sin 𝜃(𝑠, 𝑡) = 0, 𝑠 ∈ [𝐿 − 𝓁(𝑡), 𝐿], (3)

where the prime denotes differentiation with respect to 𝑠, 𝑁𝑥(𝑡) and 𝑁𝑦(𝑡) are the components along 𝑥 and 𝑦 axes of the internal
action resultant 𝑅(𝑡), which is inclined at (the counter-clockwise) angle 𝛽(𝑡) with respect to the undeformed configuration,

𝑁𝑥(𝑡) = 𝑅(𝑡) sin 𝛽(𝑡), 𝑁𝑦(𝑡) = −𝑅(𝑡) cos 𝛽(𝑡). (4)

The differential equation (3) is complemented by the boundary condition of null moment at the coordinate 𝑠 = 𝐿 (neglecting the
rotational inertia of the mass),

𝜃′(𝐿, 𝑡) = 0, (5)

and the algebraic equation provided by the tangential force balance at the sliding sleeve exit involving the configurational
force (Armanini et al., 2019)

𝑁𝑦(𝑡) = −
𝖬2(𝑡)
2𝐵

, (6)

where 𝖬(𝑡) is the bending moment at the sliding sleeve entrance, 𝖬(𝑡) = 𝐵 𝜃′(𝐿 − 𝓁(𝑡), 𝑡), which is given by

𝖬(𝑡) = 𝑁𝑥(𝑡) 𝑦𝐿(𝑡) −𝑁𝑦(𝑡) 𝑥𝐿(𝑡), (7)

while 𝑥𝐿(𝑡) and 𝑦𝐿(𝑡) are the relative coordinates of the attached mass,

𝑥𝐿(𝑡) = 𝑥(𝐿, 𝑡), 𝑦𝐿(𝑡) = 𝑦(𝐿, 𝑡). (8)

It is highlighted that Eq. (6) is the approximated version of the expression obtained in Armanini et al. (2019), by neglecting the
possible contribution from the rotational inertia of the rod. The approximation presently introduced is motivated by the fact that
the sliding velocity 𝓁̇(𝑡) is much smaller than the longitudinal wave velocity in the rod.

The internal force components can be obtained through D’Alembert’s principle as

𝑁𝑥(𝑡) = −𝑚
[

𝑥̈𝐿(𝑡) + 𝑢̈𝑔(𝑡)
]

− 𝑐(𝑡)
[

𝑥̇𝐿(𝑡) + 𝑢̇𝑔(𝑡)
]

, 𝑁𝑦(𝑡) = −𝑚
[

𝑦̈𝐿(𝑡) + 𝑔
]

− 𝑐(𝑡) 𝑦̇𝐿(𝑡), (9)

where the overdot denotes differentiation with respect to the time 𝑡, and 𝑐(𝑡) is a linear time-variable viscosity coefficient defined
as

𝑐(𝑡) = 2 𝜁

√

3𝑚𝐵
3

, (10)
6
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introduced to model the dissipation of the rod and the air drag effects outside the sliding sleeve through the non-dimensional
parameter 𝜁 ≥ 0.

The spatial integration of the elastica (3) provides the end’s relative coordinates 𝑥𝐿(𝑡) and 𝑦𝐿(𝑡) and the internal action
omponents 𝑁𝑥(𝑡) and 𝑁𝑦(𝑡) as

𝑥𝐿(𝑡) = 𝓁(𝑡)
{

1(𝑡) sin 𝛽(𝑡) −2(𝑡) cos 𝛽(𝑡)
}

, 𝑁𝑥(𝑡) =
𝐵

𝓁2(𝑡)
[(𝑘(𝑡)) −(𝜎(𝑡), 𝑘(𝑡))]2 sin 𝛽(𝑡),

𝑦𝐿(𝑡) = 𝓁(𝑡)
{

1(𝑡) cos 𝛽(𝑡) +2(𝑡) sin 𝛽(𝑡)
}

, 𝑁𝑦(𝑡) = − 𝐵
𝓁2(𝑡)

[(𝑘(𝑡)) −(𝜎(𝑡), 𝑘(𝑡))]2 cos 𝛽(𝑡),
(11)

here (𝑘(𝑡)) and (𝜎(𝑡), 𝑘(𝑡)) are the complete and incomplete elliptic integrals of the first kind, respectively,

𝑘(𝑡) = sin
(

𝜃𝐿(𝑡) − 𝛽(𝑡)
2

)

, 1(𝑡) = −1 +
2 [(𝑘(𝑡)) − (𝜎(𝑡), 𝑘(𝑡))]
(𝑘(𝑡)) −(𝜎(𝑡), 𝑘(𝑡))

,

𝜎(𝑡) = −arcsin
[

1
𝑘(𝑡)

sin
𝛽(𝑡)
2

]

, 2(𝑡) = −
2 𝑘(𝑡) cos 𝜎(𝑡)

(𝑘(𝑡)) −(𝜎(𝑡), 𝑘(𝑡))
,

(12)

with 𝜃𝐿(𝑡) = 𝜃(𝐿, 𝑡), while (𝑘) and (𝜎, 𝑘) are the complete and incomplete elliptic integrals of the second kind. Considering the
results from the spatial integration (11), the configurational force balance (6) can be rewritten as

cos 𝛽(𝑡) = 2 {[2 ((𝑘(𝑡)) − (𝜎(𝑡), 𝑘(𝑡))) − ((𝑘(𝑡)) −(𝜎(𝑡), 𝑘(𝑡)))] sin 𝛽(𝑡) cos 𝛽(𝑡) + 𝑘(𝑡) cos 𝜎(𝑡) cos (2𝛽(𝑡))}2 . (13)

The dynamics of the structural system is therefore governed by a (DAE) differential–algebraic system of five equations composed
by (i.) the two algebraic kinematic Eqs. (11)1 and (11)3, (ii.) the configurational force balance Eq. (13), and (iii.) the two following
equations of motion

⎧

⎪

⎨

⎪

⎩

𝑚
[

𝑢̈𝑔(𝑡) + 𝑥̈𝐿(𝑡)
]

+ 𝑐(𝑡)
[

𝑢̇𝑔(𝑡) + 𝑥̇𝐿(𝑡)
]

− 𝐵
𝓁2(𝑡) [(𝑘(𝑡)) −(𝜎(𝑡), 𝑘(𝑡))]2 sin 𝛽(𝑡) = 0,

𝑚
[

𝑔 + 𝑦̈𝐿(𝑡)
]

+ 𝑐(𝑡) 𝑦̇𝐿(𝑡) −
𝐵

𝓁2(𝑡) [(𝑘(𝑡)) −(𝜎(𝑡), 𝑘(𝑡))]2 cos 𝛽(𝑡) = 0.
(14)

The dynamic response can be solved for the five unknowns in time, 𝑥𝐿(𝑡), 𝑦𝐿(𝑡), 𝓁(𝑡), 𝜃𝐿(𝑡) and 𝛽(𝑡), for the respective given initial
onditions, fixed set of structural parameters 𝑚, 𝐵, 𝐿, 𝑔, 𝜁 , and prescribed sliding sleeve motion 𝑢𝑔(𝑡).

.2. Analytical periodic oscillation through asymptotic expansion

In order to obtain an analytical prediction for the dynamics of the structure subject to time-harmonic motion of the sliding sleeve
1), the differential system (14) governing the relative coordinates 𝑥𝐿(𝑡) and 𝑦𝐿(𝑡) of the end of the rod is approximated through its
symptotic expansion for small end rotation 𝜃𝐿(𝑡) under the assumption of null viscous dissipation (𝜁 = 0) as

⎧

⎪

⎨

⎪

⎩

𝑚 𝑥̈𝐿(𝑡) +
3𝐵
𝓁3(𝑡) 𝑥𝐿(𝑡) = 𝑚𝜔2 𝑢̄𝑔 cos(𝜔 𝑡),

𝑚
[

𝑔 + 𝑦̈𝐿(𝑡)
]

= 𝖬2(𝑡)
2𝐵 ,

(15)

where 𝜔 = 2𝜋𝑓 is the angular frequency. Under small rotation 𝜃𝐿(𝑡) and by assuming 𝛽(𝑡) ≈ ±𝜋∕2 (corresponding to the condition
𝑁𝑦(𝑡)| ≪ |𝑁𝑥(𝑡)|), the following second-order expansions hold

𝖬(𝑡) = 2
𝐵 𝜃𝐿(𝑡)
𝓁(𝑡)

, 𝑥𝐿(𝑡) =
2
3
𝓁(𝑡) 𝜃𝐿(𝑡), 𝑦𝐿(𝑡) = 𝓁(𝑡)

[

1 − 4
15

𝜃2𝐿(𝑡)
]

. (16)

ntroducing a reference rod’s length 𝓁𝑚 ∈ (0, 𝐿), defined as a mean value measured during a given interval of time (to be specified
ater), a dimensionless time 𝜏𝑚 can be introduced as

𝜏𝑚 = 𝑡
√

𝑔
𝓁𝑚

, (17)

together with other dimensionless quantities, namely, the dimensionless load 𝑝𝑚, the dimensionless angular frequency 𝛺𝑚, the
dimensionless oscillation amplitude 𝑈𝑚, the dimensionless external length 𝜆(𝜏𝑚), and the attached mass dimensionless coordinates
𝜉(𝜏𝑚) and 𝜂(𝜏𝑚),

𝑝𝑚 =
𝑚𝑔 𝓁 2

𝑚
𝐵

, 𝛺𝑚 = 𝜔

√

𝓁𝑚
𝑔

, 𝑈𝑚 =
𝑢̄𝑔
𝓁𝑚

, 𝜆(𝜏𝑚) =
𝓁(𝑡)
𝓁𝑚

, 𝜉(𝜏𝑚) =
𝑥𝐿(𝑡)
𝓁𝑚

, 𝜂(𝜏𝑚) =
𝑦𝐿(𝑡)
𝓁𝑚

, (18)

so that the approximated equations of motion (15) can be rewritten in the following non-dimensional form

⎧

⎪

⎨

⎪

∗∗
𝜉(𝜏𝑚) +

3
𝑝𝑚 𝜆3(𝜏𝑚)

𝜉(𝜏𝑚) = 𝛺2
𝑚 𝑈𝑚 cos(𝛺𝑚 𝜏𝑚),

1 + ∗∗𝜂(𝜏𝑚) −
2 𝜃2𝐿(𝜏𝑚) = 0,

(19)
7

⎩
𝑝𝑚 𝜆2(𝜏𝑚)
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where the superscript symbol ∗ stands for the derivative of the relevant quantity with respect to the dimensionless time 𝜏𝑚. The
end’s rotation 𝜃𝐿(𝜏𝑚) and dimensionless external length 𝜆(𝜏𝑚) are sought as the following periodic functions in the dimensionless
time 𝜏𝑚

𝜃𝐿(𝜏𝑚) = 𝜀𝜃 cos(𝛺𝑚𝜏𝑚), 𝜆(𝜏𝑚) = 1 − 𝜀𝓁 cos(2𝛺𝑚𝜏𝑚). (20)

where 𝜀𝜃 and 𝜀𝓁 are the small dimensionless amplitudes of the rotation and of the external length oscillations. By assuming the
periodic response (20), the dimensionless equations of motion (19) truncated at the smallest order reduce to

⎧

⎪

⎨

⎪

⎩

2
[

6 𝜀𝜃 − 𝑝𝑚 𝛺2
𝑚(3𝑈𝑚 + 2 𝜀𝜃)

]

cos(𝛺𝑚 𝜏𝑚) − 3 𝜀𝓁
[

2 𝜀𝜃 − 𝑝𝑚 𝛺2
𝑚 (3𝑈𝑚 + 8 𝜀𝜃)

]

cos(3𝛺𝑚 𝜏𝑚) ≈ 0,

15

[

𝑝𝑚 − 𝜀2𝜃 +
𝑝𝑚 𝜀2𝓁 (1 − 8𝛺2

𝑚)
2

]

−
[

15 𝜀2𝜃 + 30 𝑝𝑚 𝜀𝓁 − 𝑝𝑚 𝛺2
𝑚
(

8 𝜀2𝜃 + 60 𝜀𝓁
)]

cos(2𝛺𝑚 𝜏𝑚) ≈ 0.
(21)

The annihilation of the time-independent term in Eq. (21)2 leads to

𝑝𝑚 =
𝜀2𝜃

1 − 4 𝜀2𝓁 𝛺
2
𝑚
, or, equivalently, 𝜀𝜃 = ±

√

𝑝𝑚
√

1 − 4 𝜀2𝓁 𝛺
2
𝑚, (22)

the latter showing that two twin solutions exist, one with the rotation 𝜃𝐿(𝜏𝑚) in phase (𝜀𝜃 > 0) and another in counter-phase (𝜀𝜃 < 0)
with the imposed motion 𝑢𝑔(𝑡) of the sliding sleeve.

Assuming that 𝜀𝓁 𝛺𝑚 ≪ 1, the last equation reduces to

𝑝𝑚 = 𝜀2𝜃 , or, equivalently, 𝜀𝜃 = ±
√

𝑝𝑚, (23)

which in turn simplify Eqs. (21) to

⎧

⎪

⎨

⎪

⎩

2 𝜀𝜃
[

6 − 𝜀𝜃 𝛺2
𝑚(3𝑈𝑚 + 2 𝜀𝜃)

]

cos(𝛺𝑚 𝜏𝑚) − 3 𝜀𝜃 𝜀𝓁
[

2 − 𝜀𝜃 𝛺2
𝑚 (3𝑈𝑚 + 8 𝜀𝜃)

]

cos(3𝛺𝑚 𝜏𝑚) ≈ 0,

𝜀2𝜃
[

15 + 30 𝜀𝓁 −𝛺2
𝑚
(

8 𝜀2𝜃 + 60 𝜀𝓁
)]

cos(2𝛺𝑚 𝜏𝑚) ≈ 0.
(24)

The expansion (24) shows that equations of motion are satisfied at the smallest order when

⎧

⎪

⎨

⎪

⎩

6 − 𝜀𝜃 𝛺2
𝑚
(

3𝑈𝑚 + 2 𝜀𝜃
)

≈ 0,

15 −𝛺2
𝑚
(

8 𝜀2𝜃 + 60 𝜀𝓁
)

≈ 0,
(25)

whose solution can be obtained under three specific regimes, differing in the inequality ruling the orders of 𝜀𝓁 and 𝜀𝜃 , namely:

|

|

𝜀𝓁|| ≪ |

|

𝜀𝜃||
2 , |

|

𝜀𝓁|| ≈ |

|

𝜀𝜃||
2 , and |

|

𝜀𝓁|| ≫ |

|

𝜀𝜃||
2 .

Among the above three regimes, only the solution referred to the second one is presented below, because it was found to be
the only one capable to predict the stable response obtained from the direct time integration of the differential–algebraic system
(11)1, (11)3, (13), and (14) in the next Section. However, the solutions corresponding to the two remaining regimes are included
for completeness in Appendix A.

Under the assumption |

|

𝜀𝓁|| ≈ |

|

𝜀𝜃||
2, the system (25) defines the following asymptotic order for the dimensionless amplitude 𝑈𝑚

and angular frequency 𝛺𝑚

𝑈𝑚 ≈ |

|

𝜀𝜃|| , 𝛺𝑚 ≈ 1
|

|

𝜀𝜃||
, (26)

implying the validity of the following solutions for 𝑝𝑚 → 0 and for finite values of 𝑝𝑚 𝛺2
𝑚,

𝑈𝑚 =
2 ||
|

3 − 𝑝𝑚 𝛺2
𝑚
|

|

|

3 𝑝𝑚 𝛺2
𝑚

√

𝑝𝑚, 𝜀𝓁 =
15 − 8 𝑝𝑚 𝛺2

𝑚

60 𝑝𝑚 𝛺2
𝑚

𝑝𝑚. (27)

A replacement in Eq. (27)1 of the non-dimensional quantities 𝑈𝑚, 𝑝𝑚, and 𝛺𝑚 with their dimensional counterparts (18) leads to the
following twin equations

2

(

𝑚𝜔2 𝓁 3
𝑚

𝐵
− 3

)

± 3 𝑢̄𝑔 𝓁𝑚 𝜔2
√

𝑚
𝑔 𝐵

= 0, for 𝓁𝑚 ≠ 𝓁𝑐 =
3

√

3𝐵
𝑚𝜔2

, (28)

where 𝓁𝑐 represents the length of the clamped rod (with an attached mass 𝑚 and bending stiffness 𝐵) at resonance with the sliding
sleeve motion frequency 𝜔. By setting two dimensionless positive parameters 𝜎 and 𝜌, both unrestricted in their magnitude, as

𝜎 =
𝑢̄𝑔

3
√

𝑔
3

√

3
2

6

√

𝑚𝜔8

𝐵
= 1

3
3

√

3
2
𝑈𝑚

6
√

𝑝𝑚
3
√

𝛺4
𝑚 > 0, 𝜌 = 𝓁𝑚

3

√

2
3

3

√

𝑚𝜔2

𝐵
= 3

√

2
3

3
√

𝑝𝑚 𝛺2
𝑚 > 0, (29)

Eqs. (28) can be rewritten as the two following cubic dimensionless twin equations
3 3

√

2, (30)
8

𝜌 − 2 ± 3 𝜌 𝜎 = 0, for 𝜌 ≠
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Fig. 6. (Left part) Twin solutions 𝜌± versus parameter 𝜎 (solid lines), Eq. (31). In the limit of vanishing 𝜎, the two corresponding average lengths 𝓁±
𝑚 converge

o the same value 𝓁𝑐 = 3
√

3𝐵∕(𝑚𝜔2) (provided by 𝜌 = 3
√

2, dashed line), defining the length of the clamped rod at resonance with the constraint motion
requency. (Right part) Time-series of (top) the sliding sleeve harmonic motion 𝑢𝑔 (𝑡) = 𝑢̄𝑔 cos(𝜔 𝑡) and the twin periodic solutions in terms of (centre) the rotation
±
𝐿 (𝑡) = ±|𝜀𝜃 | cos(𝜔𝑡) and (bottom) the external length 𝓁±(𝑡) = 𝓁±

𝑚 [1 − 𝜀𝓁 cos(2𝜔𝑡)] for parameters 𝑚 = 0.2 kg, 𝐵 = 1.5 Nm2, 𝜔 = 10𝜋 rad/sec, and 𝑢̄𝑔 = 0.005 m. The
nput motion 𝑢𝑔 (𝑡) and the output motion 𝜃(𝑡) can be in phase or in counter-phase, each one corresponding to a different value of average external length 𝓁𝑚
ut to the same dimensionless amplitude 𝜀𝓁 .

ach one admitting a corresponding real and positive solution

𝜌±(𝜎) =

3

√

(

1 +
√

1 ± 𝜎3
)2

∓ 𝜎

3
√

1 +
√

1 ± 𝜎3
, (31)

and reported as functions of the dimensionless displacement amplitude 𝜎 at the sliding sleeve entrance in Fig. 6 (left). It is noted
that in the limit case of vanishing values of 𝜎 the two solutions 𝜌+ and 𝜌− converge to the same value,

lim
𝜎→0

𝜌±(𝜎) = 3
√

2, (32)

and therefore both the two average lengths 𝓁±
𝑚 tend to converge to length 𝓁𝑐 of the clamped system at resonance,

lim
𝑢̄𝑔
√

𝑔
6
√

𝑚𝜔8
𝐵 →0

𝓁±
𝑚 = 𝓁𝑐 . (33)

The twin solutions 𝜃±𝐿(𝑡) = ±|𝜀𝜃| cos(𝜔 𝑡) and 𝓁 ±(𝑡) = 𝓁 ±
𝑚 [1 − 𝜀𝓁 cos(2𝜔 𝑡)] are shown in Fig. 6 (right) for the parameters 𝑚 = 0.2

kg, 𝐵 = 1.5 Nm2, 𝜔 = 10𝜋 rad/sec, and 𝑢̄𝑔 = 0.005 m. Note that the rod’s end rotation 𝜃+𝐿(𝑡) is in phase with the sliding sleeve motion
𝑢𝑔(𝑡), while 𝜃−𝐿(𝑡) is in counter-phase, and that, although the twin solutions appear to be far from each other in Fig. 6 on the left, the
difference in dimensional terms is small for the case under consideration (𝓁−

𝑚 ≈ 1.056𝓁+
𝑚), as it can be appreciated from the graph

f 𝓁(𝑡) (Fig. 6, right bottom part).
It is interesting to note that the present asymptotic analysis shows that the periodic motion is a solution for the dynamic response

f the structure in the limit case of small rotations and high frequencies. Although based on these simplifying assumptions, it provides
very good prediction for the average length 𝓁𝑚 of the part of the rod external to the sliding sleeve, as shown through the comparison
ith the numerical simulations in Section 4 and with the experimental measurements in Section 5. Moreover, the present solution

eveals the self-tuning property of the system, disclosing how the average length 𝓁𝑚 of the periodic motion changes with varying
he oscillation amplitude 𝑢̄𝑔 and angular frequency 𝜔.

4. From periodic to quasi-periodic response

The asymptotic periodic solution presented in the previous section was derived with reference to the equations of motion
approximated under the assumption of small values of 𝜀𝜃 and 𝜀𝓁 . As a result, the obtained analytical prediction is relevant when
𝑈 | ∼ 1∕|𝛺 | → 0, according to Eq. (26). Furthermore, the stability of such periodic response remains an open issue. In order
9

𝑚 𝑚
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Fig. 7. Projections of the phase portraits and the Poincaré sections for the response of System 𝖠, calculated by direct numerical integration of the equations of
motion, for two quarter-period shifted phases of 𝓁(𝑡) (upper part) and two half-period shifted phases of 𝜃(𝑡) (lower part). Two qualitatively different dynamic
responses are shown: (i.) quasi-periodic motion for excitation frequency 𝑓 = 26.95 Hz (left) and 𝑓 = 28.15 Hz (centre) and (ii.) periodic motion for 𝑓 = 28.25 Hz
(right), where the transition from the former to the latter occurs through a frequency decrease. The blue dots correspond to 𝑡1 = 𝑘∕𝑓 and the red dots to
𝑡2 = (𝑘+ 1∕2)∕𝑓 for the rotation 𝜃𝐿(𝑡) and to 𝑡2 = (𝑘+ 1∕4)∕𝑓 for the external length 𝓁(𝑡). The grey regions denote the extent of the phase space covered in time
by the system.

to provide a more complete view on the mechanical response and to assess the stability of the sustained motion, the nonlinear
equations of motion (14) are numerically integrated in time.

For the purposes of the numerical integration, the order of the differential equations (14) is reduced by producing pairs of
first-order differential equations. Then, the ordinary differential–algebraic equation system consisting of Eqs. (11), (13), and the
reduced-order version of Eqs. (14) are discretized in time and the Crank–Nicolson method, adapted to ODEs, is used to proceed from
one timestep to the next. The final algorithm was programmed using MATLAB (source code available as Supplementary Material).
The obtained numerical predictions for the system response reveal that the mass can display three different types of motion at
varying input parameters: (i.) periodic; (ii.) quasi-periodic; and (iii.) divergent, the latter leading either to a complete injection
(𝓁(𝑡) → 0) or ejection (𝓁(𝑡) > 𝐿) of the rod. The periodic and quasi-periodic vibrations represent a sustained motion around a finite
value for the rod’s external length, where the interplay between the gravitational and configurational forces prevent the fall of the
mass.

By considering 𝐵 = 1.4363 Nm and 𝑢̄𝑔 = 5 mm, the two types of sustained motion are shown in Figs. 7 and 8 for System 𝖠
(characterized by 𝑚 = 0.1 g and 𝜁 = 0.02) and in Figs. 9 and 10 for System 𝖡 (characterized by 𝑚 = 0.197 g and 𝜁 = 0.005, with
the former value representative of the experimental setup corresponding to 𝑚𝐿 = 130 g, under the rod-lumped mass approximation,
meaning that 𝑚 = 𝑚𝐿 + 𝛾𝐿). More specifically, the phase portraits of 𝓁(𝑡) and 𝜃𝐿(𝑡) are reported in Figs. 7 and 9 together with their
Poincaré sections, while the respective Fast Fourier Transforms 𝑃𝜃𝐿 (𝑓 ) and 𝑃𝓁(𝑓 ) are reported in Figs. 8 and 10. The results are
reported when the transient effects due to the initial conditions on the motion are dissipated.

The Poincaré sections are shown for two shifted timings 𝑡1 (blue dots) and 𝑡2 (red dots), with 𝑡1 = 𝑘∕𝑓 and 𝑡2 = (𝑘 + 1∕2)∕𝑓 for
the rotation 𝜃𝐿(𝑡) and with 𝑡1 = 𝑘∕𝑓 and 𝑡2 = (𝑘 + 1∕4)∕𝑓 , for the external length 𝓁(𝑡), with 𝑘 ∈ N defining the timings within the
relevant interval. Moreover, the whole set of states occupied by the system is drawn as a grey region. The Poincaré sections appear
as a single point (and the whole set of states as an ellipse) when the response is periodic (𝑓 = 28.25 Hz in Fig. 7, 𝑓 = 2.5 Hz in
Fig. 9) or as a set of points resembling a closed loop when the response is quasi-periodic (𝑓 = 26.95 Hz and 𝑓 = 28.15 Hz in Fig. 7,
𝑓 = 3.2 Hz and 𝑓 = 3.5 Hz in Fig. 9). Therefore, it follows that the transition from periodic to quasi-periodic dynamics is shown in
Figs. 7 and 8 (Figs. 9 and 10) may occur at decreasing (or at increasing) sliding sleeve oscillation frequency 𝑓 for System 𝖠 (System
𝖡).

The change from periodic to quasi-periodic can be also appreciated from the Fast Fourier Transforms shown in Figs. 8 and 10
through the appearance of additional peaks in correspondence to several frequencies different from 2𝑓 for 𝑃𝓁(𝑓 ) and to 𝑓 for 𝑃𝜃𝐿 (𝑓 ).

The conditions providing the transition between the different types of motion and when the sustained motion cannot occur are
displayed over a wider set of frequencies through the diagrams reported in Figs. 11 and 12 for Systems 𝖠 and 𝖡, respectively. In these

num (solid black line) and the corresponding maximum 𝓁num and minimum
10

diagrams, the numerical values of the average length 𝓁𝑚 max
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Fig. 8. As for Fig. 7, except that the spectrum of the response is analysed, as calculated using the Fast Fourier Transform. A single peak in the graphs occurring
at rational values of 𝑓∕𝑓 implies a periodic response, while peaks appearing for other values of 𝑓∕𝑓 imply a quasi-periodic response.

Fig. 9. As for Fig. 7, but for System 𝖡 and showing that the transition from quasi-periodic (𝑓 = 3.5 Hz, right, and 𝑓 = 3.2 Hz, centre) to periodic (𝑓 = 2.5 Hz,
left) response can occur through a frequency decrease.
11
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Fig. 10. As for Fig. 8, except that the spectrum refers to System 𝖡 as considered in Fig. 9.

𝓁num
min length values (dash-dotted black lines) are reported as functions of the frequency 𝑓 and computed for each frequency value

as

𝓁num
𝑚

(

𝑓
)

=
𝑓
𝑘 ∫

𝑡0+𝑘∕𝑓

𝑡0
𝓁(𝑡)d𝑡, 𝓁num

max
(

𝑓
)

= max
𝑡∈[𝑡0 ,𝑡0+𝑘∕𝑓 ]

{𝓁(𝑡)} , 𝓁num
min

(

𝑓
)

= min
𝑡∈[𝑡0 ,𝑡0+𝑘∕𝑓 ]

{𝓁(𝑡)} , (34)

here 𝑡0 is a time instant after the transient effects are dissipated and the integer 𝑘 (assumed equal to 60) is the number of oscillation
eriods used to determine 𝓁num

𝑚 , 𝓁num
max , and 𝓁num

min . The two average lengths 𝓁+
𝑚 (blue) and 𝓁−

𝑚 (red), analytically estimated through
Eq. (31), are also included in the diagrams, confirming how the asymptotic expression 𝓁−

𝑚 provides an excellent estimation for the
self-tuned external length 𝓁.

Interestingly, the diagram shows that the transition from periodicity (green region, marked with ‘P’) to quasi-periodicity (light
green region, marked with ‘QP’) is the result of a dynamic bifurcation of the system, where both 𝓁num

min and 𝓁num
max display a visible

discontinuity in their derivative. Such dynamic bifurcation is followed by a monotonic increase in the differences 𝓁num
max − 𝓁num

𝑚 and
𝓁num
𝑚 −𝓁num

min , eventually ending in the loss of quasi-periodicity due to the complete injection of the rod within the sliding sleeve (red
region, marked with ‘IN’). Under this circumstance, due to the nonlinearities inherent to the increasing oscillation amplitude of the
rod’s external length, the relation |

|

𝜀𝓁|| ≈ |

|

𝜀𝜃||
2 does not hold anymore and the periodic solution (20), obtained through an asymptotic

technique, becomes no longer representative of the structural response at varying frequency of the sliding sleeve. Moreover, it is
also worth to mention that the loss of sustained motion may theoretically occur even without passing through a quasi-periodic
response, as shown at low frequencies (𝑓 ≈ 1 Hz) in Fig. 12. Overall, the diagrams show that the sustained motion occurs when
𝑓 > 26.45 Hz for System 𝖠 and for 1.11 Hz < 𝑓 < 3.60 Hz and 𝑓 > 26.35 Hz for System 𝖡. This result confirms that, in agreement
with the experimental observations in Section 2 (Figs. 2–4), the present structural model does display not only a (stable) self-tuned
sustained motion for high frequencies but it may also display it for an ‘island’ of intermediate set of frequencies depending on the
elastic, inertial, and dissipation parameters. Note that, while the present model based on linear damping never displayed chaotic
behaviour, the introduction (not pursued here) of nonlinear dissipation, for instance friction, may deeply change the dynamics of
the system, thus leading to chaos.

5. Experimental setup and validation of the self-tuning external length value

The experimental setup developed for testing the sliding rod is shown in Fig. 13 and was designed, manufactured and tested at
the Instabilities Laboratory of the University of Trento.

The sliding sleeve is realized through two parallel arrays of rollers kept at a small fixed distance by means of two acrylic panels.
More specifically, the distance between the roller arrays is set to maintain the constrained part of the rod straight, but still free to
slide. The sliding sleeve constraint device is connected through a stinger to an electromagnetic actuator (ElectroForce Linear motor
3300 Series II by Bose, frequency range 1–100 Hz, rated peak force SINE/RANDOM 3000N, max rated travel 25 mm) and screwed
12
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Fig. 11. Bifurcation diagram, showing the transition from periodic (green region, marked with ‘P’) to quasi-periodic (light green region, marked with ‘QP’)
response of System 𝖠, when the excitation frequency is decreased to the value 𝑓 ≈ 28.20 Hz. When the frequency 𝑓 is further reduced to reach the frequency
̄ ≈ 26.45 Hz, the rod suffers injection (red region, marked with ‘IN’). The blue and red lines represent the two asymptotic evaluations for the average external
engths 𝓁 +

𝑚 and 𝓁 −
𝑚 , respectively, while the length 𝓁𝑐 of the clamped rod at resonance is reported as a dashed purple line. The inset highlights the bifurcation

nd the transition points occurring at 𝑓 = 28.20Hz and at 𝑓 = 26.45Hz, respectively.

Table 1
Properties of the carbon-fibre rods used in the
experiments.

Property Value

Thickness 2.04 mm
Width 25.33 mm
Length 𝐿 800 mm
Bending stiffness 𝐵 1.4363 Nm2

Mass (𝛾 𝐿) 67 g

on a rail system that ensures motion along the horizontal direction only. Before each test, the sliding sleeve was oiled using Ballistol.

Carbon fibre rods are used in the experiments because of their modest material damping. The rods have a thin rectangular cross
ection and are realized by cutting a carbon-fibre sheet. The rod properties are summarized in Table 1. The lumped mass 𝑚𝐿 is

made with a pair of interchangeable metallic discs mounted at the rod’s end. Two values of the lumped mass 𝑚𝐿 were selected, 130
and 303 g. The equipment was designed to allow the excitation frequency 𝑓 and amplitude 𝑢̄𝑔 to lie within the ranges [0, 20]Hz
nd [0, 10]mm, respectively.

The rod’s dynamics was recorded during the experiments with a Phantom High Speed V2640 camera and a Sony PXW-FS7 camera
nd the related videos were post-processed using a Matlab script in order to extract the time-histories of the relative coordinates,
𝐿(𝑡) and 𝑦𝐿(𝑡), of the mass and the external length of the rod 𝓁(𝑡).

Quantitative experimental results are reported in Fig. 14 for every pair of values 𝑢̄𝑔 and 𝑚𝐿 by performing the experiments of type
ii). In addition to the trajectories reported in Fig. 2, the experimental results are also shown in Fig. 14 in terms of period-averaged
xternal length 𝓁(𝑘)

𝑎 at the 𝑘th period of the sliding sleeve oscillation, evaluated as

𝓁(𝑘)
𝑎 = 1

𝑡𝑘+1 − 𝑡𝑘 ∫

𝑡𝑘+1

𝑡𝑘
𝓁(𝑡) d𝑡, 𝑘 ∈ N, (35)

where 𝑡𝑘 (𝑡𝑘+1) denotes the time instant at which the period begins (terminates).
The experimentally evaluated values of 𝓁(𝑘)

𝑎 appear as a cloud of grey dots (included as data collection and visible as a real-time
collection in the videos available as Supplementary Material), satisfactorily matching the asymptotically obtained average external
lengths, 𝓁 +

𝑚 and 𝓁 −
𝑚 , evaluated (for the undissipated system, 𝜁 = 0) through Eq. (31) by considering 𝑚 = 𝑚𝐿 + 𝛾 𝐿. The average

external lengths, 𝓁 +
𝑚 and 𝓁 −

𝑚 , are obtained under the assumption |

|

𝜀𝓁|| ≈ |

|

𝜀𝜃||
2 and are complemented by reporting the length of the

resonant clamped-free rod 𝓁𝑐 . It follows that a major result of the experimental campaign is the validation of the relation between
̄

13

the self-tuning external rod’s length 𝓁 and the prescribed frequency of the sliding sleeve, 𝑓 , Fig. 14. In a rough sense, the external
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Fig. 12. As for Fig. 11, except that System 𝖡 is analysed. Two ranges of frequencies are found (highlighted in the two insets) within which the rod is subject
o sustained motion. The loss of sustained motion can occur without displaying an intermediate quasi-periodic dynamics.

ength of the rod 𝓁 is shown to self-adjust (in an average sense) approximately within the range [𝓁 +
𝑚 ,𝓁 −

𝑚 ], so that the rod mass system
volves to reach a configuration close to its resonant state and a sustained motion is realized. However, the sustained motion can
e terminated by the occurrence of an instability in which the rod trajectory degenerates into a final injection.

. Conclusions

A special kind of elastic inverted pendulum, for which static equilibrium is impossible at small deflections, has been analysed.
nterestingly, its inverted configuration can be maintained against gravity when a transverse vibration is applied at the lower
onstraint. For specific ranges of system parameters the structure is shown (analytically, numerically, and experimentally) to self-
une its external length and display a sustained motion, obtained through an interplay between the downward (constant) gravity
orce and the upward (time-varying) configurational force, the latter strictly related to the elasticity of the structure.

For the analysed structure, the two following main features are found.

• Existence of twin asymptotic periodic motions, around two different finite values of the average rod’s length 𝓁 +
𝑚 and 𝓁 −

𝑚 ,
external to the sliding sleeve. These two values are shown to be close to 𝓁𝑐 , corresponding to the length of a clamped rod at
resonance at the input frequency. Accurate numerical simulations, accounting for a full nonlinear behaviour, have shown that
only one (𝓁 −

𝑚 ) among the two periodic solutions may be stable.
• Stability of the sustained motion occurs only within a certain range of frequencies and amplitudes. Here, the sliding rod

displays self-tuning properties by spontaneously adjusting its length as a result of the change in the oscillation amplitude and
14

frequency.
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Fig. 13. Experimental setup designed for the oscillating sliding-sleeve system (realized at the Instabilities Lab of the University of Trento). Upper part: general
arrangement. Lower part: details of the sliding sleeve (left and centre) and of the lumped mass 𝑚𝐿 (right).

The presented results may find application in compliant systems, including resonant metamaterials, where the self-tuning
capability via configurational constraints can be exploited for the development of wave mitigation devices and environmental energy
harvesters based on flexible mechanisms. Moreover, the introduced mechanical concept can drive novel control applications where
a longitudinal output can be tuned through a transverse input, with the purpose of chasing designed trajectories or to reach targeted
positions.
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Fig. 14. External length 𝓁 of the rod versus oscillation frequency 𝑓 for systems with lumped mass 𝑚𝐿 = {130, 303} g and constraint amplitude 𝑢̄𝑔 = {3.5, 5}mm.
The grey points correspond to the period-averaged external length 𝓁(𝑘)

𝑎 evaluated from the experimental measurements through Eq. (35) (data collection available
as Supplementary Material). The blue and red solid lines respectively correspond to the asymptotic predictions 𝓁 +

𝑚 and 𝓁 −
𝑚 , Eq. (31). while the dashed purple line

represents the length 𝓁𝑐 of the clamped rod at resonance. Absence of stability for the sustained motion can be observed for an intermediate range of frequencies
where a gap is observed between the grey dots (the absence of grey dots at higher frequencies is due to the lack of experimental data), resulting in a complete
injection of the rod. When the sustained motion is stable, the system displays self-tuning property through its spontaneous adjustment in the value of the external
length 𝓁 as a consequence of a small variation in the oscillation frequency 𝑓 .
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Appendix A. Asymptotic solution under regimes for which |

|

𝜺𝓵|| ≉ |

|

𝜺𝜽||
𝟐

The asymptotic solutions corresponding to the regimes |

|

𝜀𝓁|| ≪ |

|

𝜀𝜃||
2 and |

|

𝜀𝓁|| ≫ |

|

𝜀𝜃||
2 are reported.

A.1. Regime |
|

𝜀𝓁|| ≫ |

|

𝜀𝜃||
2

In this regime the dimensionless amplitude 𝑈𝑚 and frequency 𝛺𝑚 have the following asymptotic order

|

|

𝑈𝑚
|

|

≫ |

|

𝜀𝜃|| , |

|

𝛺𝑚
|

|

≈ 1
√

|

|

𝜀𝓁||
, (36)

implying the following relations at 𝑝𝑚 → 0 and for finite values of
√

𝑝𝑚 𝛺2
𝑚

𝑈𝑚 = ± 2
√ 2

, 𝜀𝓁 = 1
√ 2

√

𝑝𝑚, (37)
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d

A

w

the latter showing that the solution defines 𝜀𝓁 ≈ 𝜀𝜃 . Eq. (37) leads to the expressions for the average length 𝓁𝑚 and its normalized
amplitude 𝜀𝓁 as

𝓁𝑚 = ± 2
𝜔2𝑢̄𝑔

√

𝐵
𝑚
, 𝜀𝓁 = ±

𝑢̄𝑔
8

√

𝑚𝑔
𝐵

, (38)

efining a gravity-insensitive average length 𝓁𝑚.

.2. Regime |
|

𝜀𝓁|| ≪ |

|

𝜀𝜃||
2

While in this regime the value 𝜀𝓁 remains undefined, the dimensionless amplitude 𝑈𝑚 and frequency 𝛺𝑚 have the following
asymptotic order

|

|

𝑈𝑚
|

|

≈ |

|

𝜀𝜃|| , |

|

𝛺𝑚
|

|

≈ 1
|

|

𝜀𝜃||
, (39)

implying that the solutions valid at 𝑝𝑚 → 0 and for finite values of 𝑝𝑚 𝛺2
𝑚 define

𝑈𝑚 = ±
2
√

𝑝𝑚
5

, 𝛺𝑚 = 1
2

√

15
2𝑝𝑚

, (40)

hich can be rewritten in terms of the average length 𝓁𝑚 and the oscillation amplitude 𝑢̄𝑔 as

𝓁𝑚 = 1
2

3

√

15𝐵
𝑚𝜔2

, 𝑢̄𝑔 = 1
2

3

√

9
5𝜔4

6

√

𝐵
𝑚
√

𝑔. (41)

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2023.105452.
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