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Abstract 

Origami traces its origins to an ancient art form transforming flat thin surfaces into various complex, 

fabulous three-dimensional objects. Nowadays, such transformation transcends art by offering a 

conceptual framework for non-destructive and scale-independent abstractions for engineering 

applications across diverse fields with potential impact in education, science, and technology. For 

instance, a growing number of architected materials and structures are based on origami principles, 

leading to unique properties that are distinct from those previously found in either natural or 

engineered systems. To disseminate those concepts, this Primer provides a comprehensive overview 

of the major principles and elements in origami engineering, including theoretical fundamentals, 

simulation tools, manufacturing techniques, and testing protocols that require non-standard setups. 

We highlight applications involving deployable structures, metamaterials, robotics, medical devices, 

and programmable matter to achieve functions such as vibration control, mechanical computing, and 

shape morphing. We identify challenges for the field, including finite rigidity, panel thickness 

accommodation, incompatibility with regular mechanical testing devices, manufacturing of non-

developable patterns, sensitivity to imperfections, and identifying the relevant physics at the scale of 

interest. We further envision the future of origami engineering aimed at next-generation 

multifunctional material and structural systems. 
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[H1] Introduction  

Origami, the ancient art of paper folding, has proven to be a powerful concept, inspiring innovations 

in science, engineering, and beyond. Reflecting on the famous quote by Louis Sullivan, “form follows 

function,” it becomes clear how the power of folding, with its ability to transform one geometric form 

to another (from 2D to 3D in most cases), is essential. This transformation creates new possibilities for 

scientists and engineers to design multifunctional machines, lightweight structures and architected 

materials (see Table 1). The ideas of folding induced origami structures can be found in nature1 (see 

Figure 1A), and in thin walled structures undergoing sudden large deformation (see Figure 1B,C)2,3. A 

recent noteworthy engineering application of origami is the starshade structure, which is illustrated 

in Figure 1D.  

 

Mathematically, an origami is locally a two-dimensional, discrete manifold, which is characterized 

simply by a set of creases, namely lines on the manifold where (sharp) folding occurs; and folding 

angles of the creases that determines the amount of folding. The creases divide the manifold into two-

dimensional pieces, which are called panels. The creases can either be straight or curved lines. When 

all the creases are straight lines, the panels are polygonal in shape4. The points of intersection of the 

creases are referred to as the vertices. The local structure of an origami refers to any portion of the 

origami that is away from boundaries and intersections of multiple (>2) panels. It is possible that some 

origami do not have any boundary, forming enclosed polyhedra. In the remainder of this Primer, 

unless otherwise stated, origami refers to patterns with straight creases and thin panels.  

 

Depending on the direction of the crease that the folding action is pushing it to, creases are 

categorized as mountain (M) folds and valley (V) folds. In other words, the mountain/valley (M/V) 

assignment of a crease determines whether it folds up (mountain) or down (valley). The M/V 

assignments are relative because depending on the viewing angle, mountain folds can be viewed as 

valley folds, and vice versa, but they are always pointing to opposite directions (locally). Such a 

convention leads to the crease pattern, a blueprint for origami structures, as shown in Figure 1E. Next, 

let us first introduce a few frequently studied properties in origami-related research articles, as they 

govern the mechanical and kinematic behavior of origami structures.  

 

[H2] Developability 

Following the instruction of the crease pattern, typical origami folds up from a flat sheet into a 3D 

shape through isometric, or nearly isometric transformation, without subjecting the sheet to stretch 

or tearing. Such an origami structure, with a flat initial state, is called developable (for example, the 

Miura-ori pattern). Theoretically, when the thickness of the sheet is assumed to be zero, the volume 

encompassed by the origami structure in its developed state is zero. To determine whether an origami 

is locally developable from its crease pattern, the N panel angles (for example, {𝛼𝑖 , 𝑖 = 1. . 𝑁}), or 

sector angles, meeting at a vertex can be added up. If their sum is 360 degrees (or 2𝜋), this vertex 

can be flattened onto a plane (see Figure 1F). Mathematically, this condition is expressed as:  

𝛼1 + 𝛼2 + 𝛼3 +⋯+ 𝛼𝑁 = 2𝜋 

If all vertices of an origami are developable, this origami is globally developable. We note that this rule 

only applies to vertices with neighborhoods that are locally two-dimensional manifold.  
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[H2] Flat foldability  

When the folding-induced transformation includes a state (other than the developed state) in which 

the entire origami structure can be flattened onto a plane, typically with overlapping of panels, the 

corresponding origami is called flat-foldable (for example, the Miura-ori pattern). The folded planar 

state is referred to as the flat-folded state. In general, there may be more than one flat-folded states 

for an origami. The Kawasaki-Justin theorem gives the locally necessary and sufficient condition for an 

origami vertex to be flat-foldable. For an origami vertex with N consecutive panel angles (N must be 

even) labelled from 1 to N (Figure 1G), then the vertex can be flat-foldable if: 

𝛼1 − 𝛼2 + 𝛼3 − 𝛼4…− 𝛼𝑁 = 0 

The number N is called the degree of a vertex, defined as the number of creases incident on a vertex. 

The Kawasaki-Justin theorem deals with the panel angles but do not guide how an origami vertex can 

be folded flat, which relates to the M/V assignment (see Figure 1H). The condition about fold 

directions for a flat-foldable vertex is the Maekawa-Justin Theorem:  

 

Let M be the number of mountain folds and V be the number of valley folds. If an origami vertex is flat 

foldable, then 

𝑀 − 𝑉 = ±2 . 

 

The Maekawa-Justin theorem is a locally necessary but not sufficient condition. For a crease pattern 

to be globally flat-foldable, all of its vertices must be locally flat-foldable, which is still, a necessary but 

not sufficient condition. Any flat foldable vertex must have even degrees (precondition of Kawasaki-

Justin theorem), which leads to a necessary criterion for global flat-foldability: the 2-colorability of a 

crease pattern (see Figure 1E). A graph with all even degree vertices can be called an Eulerian graph, 

and it has been proven that Eulerian graphs satisfy 2-face-coloring5. However, “flat-foldability is hard” 

(NP-hard, indeed) 6. The readers are referred to references6,7 for more details. It is noted that flat 

foldability is a new, independent property from developability, for example, the eggbox is not 

developable but flat-foldable. 

  

[H2] Rigid foldability  

During the folding-induced transformation, if the deformation of the sheet is only concentrated along 

the creases, without bending or stretching the panels, this origami is called rigid origami. It means that 

the origami can be folded while keeping all regions of the paper flat and all crease lines straight5. Along 

with the emergence of origami engineering, analysis of rigid foldability became of great interest in the 

first two decades of the 21st century. This is because of the increasing use of new materials other than 

paper for origami applications. While paper is quite forgiving if the panels must deform, other 

materials, such as metal, wood, and stiff plastics are not. The well-known Miura-ori pattern, eggbox 

pattern, waterbomb pattern, Yoshimura pattern are all rigid origami, but the square twist8,9 and 

Hypar10 patterns are not rigid origami. 

A necessary but not sufficient condition for rigid foldability given a single origami vertex11,12 specifies 

that the product of rotation matrices about all the creases (say N in number) of a vertex should be the 

identity matrix (𝐈)13,14, using the Belcastro-Hull theorem:  



 

 4 

∏ 𝐑𝜌

𝑁

𝑖=1

(𝜌𝑖) 𝐐𝛼(𝛼𝑖) = 𝐈 

where 𝐑𝜌  and 𝐐𝛼  are the transformation matrices in terms of the turning angles 𝜌𝑖  and panel 

angles 𝛼𝑖 , respectively (see Figure 1I). These matrices are given by: 

 𝐑𝜌(𝜌𝑖) = [
1 0 0
0 cos 𝜌𝑖 −sin 𝜌𝑖
0 sin 𝜌𝑖 cos 𝜌𝑖

],          𝐐𝛼(𝛼𝑖) = [
cos 𝛼𝑖 −sin 𝛼𝑖 0
sin 𝛼𝑖 cos 𝛼𝑖 0
0 0 1

] 

As an application of the above condition, we consider the degree-4 vertex shown in Figure 1I. In this 

example, N=4 and if we choose 𝛼1 = 𝛼4 = 60° and 𝛼2 = 𝛼3 = 120° then for a particular partially 

folded state, the turning angles are 𝜌1 ≈ −53.13°, 𝜌2 = 𝜌4 = 90° and 𝜌3 ≈ 53.13°. The sign of 

the turning angle is obtained by using the right-hand thumb rule with the thumb pointing along each 

of the creases in a consistent direction (either inward or outward from the vertex) as the fingers curl 

along the arrows marked for 𝜌𝑖, as shown in Figure 1I. If the direction of the thumb has to change in 

order to follow the arrow marked for a turning angle, then it suggests a change of sign. Using these 

choices of angles, it can be shown that the product of the rotation matrices about all the four creases 

would be an identity matrix. 

The matrix approach is quite practical and useful when analyzing origami structures with several 

vertices and creases, as the implementation can be naturally carried out using a computer program. 

This is typically done by modeling origami using Denavit-Hartenberg-based analysis15 that is widely 

used in the analysis of linkages. The connection between linkages and origami is very useful, especially 

for thick origami16,17.   

To ensure both sufficiency and necessity for rigid foldability, other detailed conditions (in addition to 

the Belcastro-Hull theorem11,12) must be carefully checked, such as the bird’s feet condition on M/V 

assignment18, which is both necessary and sufficient for a single vertex. Based on the rank deficiency 

of the kinematic Jacobian matrix (a linear expansion of the Belcastro-Hull theorem), a counting rule to 

calculate the generic DOF (degrees of freedom) of a finite origami pattern was also developed13. When 

the generic DOF is greater than zero, the corresponding pattern is rigidly foldable, otherwise no 

decisive conclusion can be drawn. The counting rule is given as follows: 

𝑁𝐺𝐷𝑂𝐹 = 𝑁𝐸𝑂 − 3 −∑ (𝑘 − 3)𝑁𝑃𝑘𝑘>3 , 

where 𝑁𝐺𝐷𝑂𝐹  denotes the generic number of DOFs, 𝑁𝐸𝑂  denotes the number of boundary edges 

of a pattern, 𝑘  is the number of sides of a polygonal panel, and 𝑁𝑃𝑘 denotes the number of k-sided 

polygons in an origami pattern. The derivation involves the Euler number of the manifold where the 

origami pattern lies on – the readers are encouraged to derive this formula by themselves. Based on 

the above condition, a pattern with only triangular panels is guaranteed to be rigidly foldable if it has 

more than 3 boundaries6. However, this condition is too strict practically. For example, many degree-

4 origami patterns (patterns with only degree-4 vertices) are rigidly foldable, but they cannot be told 

by this formula. For degree-4 origami, case-by-case discussion is needed19,20, and the panel angles and 

M/V assignment are both critical for rigid foldability (Figure 1H). Some ways to predict the folding 

behavior of rigid origami are to use mathematical tools like spherical trigonometry4 or computational 

origami simulations21.  

It is important to realize that flat-foldability, developability, and rigid foldability are independent 

features of origami; having one feature does not imply the other (Figure 1J, Table 2). Different features 
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are suited for particular engineering applications. For example, robotic actuation requires a quick 

deployment of motion and release of energy, and hence non-rigid origami with multi-stability are 

often exploited for those purposes. On the other hand, sandwich composite cores require mass 

production and high stiffness, and hence developable rigid origami patterns are often used.     
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Figure 1: Origami overview. (A) Nature-inspired origami - Microscopical bellows pattern of the Giant 

Hawkmoth Achaerontia atropos shown in the inset (Credit: L.T. Wasserthal) 1. (B) Spontaneous Kresling 

pattern obtained by twist buckling experiment. (C) Kresling pattern (Credit: S. Georgakopoulos). (D) The 
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unfolding of a starshade origami. Credit: NASA/JPL-Caltech 22.  (E) The crease pattern (left) of a Crane 

(right) using the 2-colorability (coloring) property.  (F) A typical degree-4 origami vertex in its developed 

state. (G) The folded shape of a degree-4 vertex (below: flat-foldability condition). (H) Single crease layout 

with different mountain (thick-continuous blue lines) and valley (thin-dashed red lines). Left: square twist; 

right: Mars. Credit: Robert Lang’s book 23. (I) The turning angles between the panels of a degree-4 vertex used 

to apply the rigid foldability condition from Belcastro-Hull condition. (J) A Venn diagram (left) showing the 

relationship between flat foldability, developability, and rigid foldability, with typical examples given on the 

right. For a more complete list of patterns and their properties, please refer to Table 2. (K) Thick origami 

models. Thickness-accommodation of Waterbomb origami pattern using the offset hinge technique 16. 

 

[H2] Thick origami models 

Origami patterns are commonly crafted from thin sheets (approaching zero-thickness). To apply them 

to real engineering applications, thickness accommodation imposes additional constraints. In general, 

thick origami is treated on a case-by-case basis, and thus many methods exist to accommodate panel 

thickness24. By modeling thick origami using spherical linkages17, the folding creases remain 

unchanged and the panels are either tapered25 or offset26 for a compact folding with least physical 

interference of panels. Such methods are only effective for one-dimensional folding and normally 

leave gaps or cannot be extended for patterns with large number of vertices considering two-

dimensional folding. A kinematic approach has been proposed for rigid origami of thick panels – it 

involves replacing the spherical linkages with the spatial linkages at origami vertices consisting of four, 

five and six creases16. This is a comprehensive approach, which is capable of reproducing motions 

kinematically equivalent to those of zero-thickness origami (Figure 1K). Meanwhile, to achieve the 

thick-panel folding of the non-flat developable vertex, auxiliary panels as intermediate links are 

introduced to construct a plane-symmetric spatial linkage, which delivers compact folding27. 

Alternatively, a parallel-crease method can be used to create space for the panel thickness28, however, 

this method introduces extra degrees of freedom as a four-crease vertex is transferred into an eight-

bar linkage with at least two degrees of freedom. A recent contribution to the thick-panel origami 

consists of applying kirigami to the thick panels, whose advantage is to obtain the most compact 

folding of the Miura-ori patterns with uniform thickness29. Additional work has been done on the 

physical forms of crease lines, such as rolling-contact joints30 or compliant joints, which results in the 

variable kinematic models for the folding process. As there are many methods to treat thick-panel 

origami, it is difficult to determine which is the most efficient method without considering the practical 

case of interest. For example, for large-scale deployable structures, the folding ratio and the stiffness 

take the highest priority, while for micro-scale structures, the fabrication and flexibility take the main 

role. Hence, other methods are expected in future developments. 

 

 

[H2] Overview  

From an engineering perspective, a few representative origami patterns are considered in this Primer, 

including the Miura pattern, the eggbox pattern, the waterbomb pattern, and the Kresling tube.  

These representative patterns are used as examples for origami experiments and manufacturing with 

desired rigid or non-rigid behavior (see Experimentation section). In the Results section, geometric 

descriptions of origami structures are provided using the aforementioned patterns, and their 

geometric mechanics features are discussed. The unusual properties of origami structures have 
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enabled engineering applications across different fields ad scales, including sustainable and resilient 

buildings, mechanical metamaterials, robotics and medical devices (see Applications section). Basic 

information for testing origami, and standard formats to share origami designs, are recommended. 

The limitations and opportunities in the context of design and manufacturing of origami, and an 

outlook for the future of origami in engineering are envisioned. 

 

Table 1: A sample of events regarding the evolution of origami engineering developments (not an exclusive list). 

Year Key developments 

1950s Origami notation – Yoshizawa-Randlett System32  

1970 Discovery of Miura-ori for engineering applications33 

1994 Origami mathematics34–37 

Origami in nature38,39 

2002 Discovery of Kresling origami2 

Computational origami21,40 

2005 
Origami design by nature1 

2010 Origami robotics41,42 

2011 Thick origami16,24,25 

2013 Geometric mechanics37,43,44 

2014 Origami metamaterials45,46 

2015 Origami multistability47–49 

2016 Origami dynamics50–52 

Origami curvature53,54 

2017 Structural analysis of non-rigid origami55,56 

2019 Re-programmable metamaterials43,57,58 

2020 Origami actuation49,58,59 

2021 Modular origami60 

2022 Experiments on geometric mechanics46,61 
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Table 2: A sample of origami Patterns with featured properties, and applications (not an exclusive list). *Degree 

of Freedom. 

Patterns Featured Properties 

(incomplete list) 

Engineering Applications  

Miura-ori  

 

1-DOF*, Developability, Rigid 
Foldability, Flat Foldability, 
Auxeticity.   

Space structures62, Metamaterials37, 

Frequency Selective Surfaces63, Robotics64  

Blockfold 1-DOF*, Developability, Rigid 
Foldability, Flat Foldability, 
Auxeticity.   

Foldcore65 

Eggbox 1-DOF, Rigid Foldability, Flat 

Foldability.   

Sandwich structures66, Metamaterials37 

Waterbomb  Developability, Rigid Foldability, 

Flat Foldability.   

Smart materials67, Robotics (origami 

wheel)68,69, Origami Stents70 

Yoshimura Developability, Rigid Foldability, 

Flat Foldability.   

Folded concrete structures71 

Kresling tube Flat Foldability, Multistability. Robotics59,72, Impact mitigation50 

Morph 1-DOF, Rigid Foldability, Flat 
Foldability, Reversible Auxeticity 

Metamaterials43,57 

 

Barreto-Mars73 1-DOF, Developability, Rigid 

Foldability, Flat Foldability, 

Auxeticity.   

Solar cells 

Flasher  1-DOF, Developability, 

Auxeticity. 

Solar sails74 

Ron-Resch Developability, Rigid Foldability.   Energy absorption75 

Miura-based 

tubes 

1-DOF, Rigid Foldability, Flat 

Foldability.  

Robotics76 

Square twist Developability, Flat Foldability, 

Auxeticity, Multistability. 

Metamaterials8, Programmable antennas9  

Hypar origami   Developability, Multistability. Metamaterials4 

Origami 

Snapology  

Rigid Foldability Metamaterials77, Waveguide78 
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Trimorph 1-DOF, Rigid Foldability, Flat 
Foldability, Reversible 
Auxeticity, Multistability. 

Metamaterials46 

 

[H1] Experimentation  

This section presents experimental equipment and manufacturing techniques to create and test 

origami tessellations. Origami tessellations display fascinating mechanical properties, including 

tunable Poisson’s ratio37,43, multistability46,58,72,79,80, tunable stiffness81–84, and others, such as shape 

morphing76,85,86, and acoustics87,88. The experimental evidence of such properties requires a careful 

sample manufacturing; and the design of ad-hoc experimental setups. The latter point is particularly 

important since the samples undergo large deformations simultaneously in longitudinal and 

transverse directions due to their intrinsic nonlinear folding mechanisms. Different laboratory 

equipment is required depending on the type of experiment to be performed, for example, qualitative 

or quantitative. In the latter case, loading frames, prototyping machines, cameras, transducers and 

acquisition systems are needed to test origami tessellations and to record, at the same time, 

experimental data. Below, the sequence of steps typically followed in fabricating and testing origami 

structures and metamaterials are discussed. Specifically, the manufacturing methods, folding and 

assembly, sample preparation and checks, experimental setups, and data collection and 

postprocessing are described. 

 

[H2] Manufacturing methods 

Origami tessellations have a long history89. They can be realized by different manufacturing techniques 

and base materials. Some of the most common materials and techniques are addressed below.  

[H3] Paper and polymer-based models 

The simplest way to create origami patterns is by folding craft paper (for example, Mi- Teintes, 

Canson), cardboard, polyester film (for example, Grafix Drafting Film), or composite film (e.g., Durilla 

Durable Premium Ice Card Stock)59,82,90,91. The folding lines can be marked or perforated with evenly 

spaced cuts. Laser cutters are used to perforate thin flat sheets along the folding lines, as shown in 

Figure 2A. Other electronic cutting machines (for example, Silhouette CAMEO, Silhouette America) 

can also be used to perforate thin sheets that can be folded using origami principles. The main 

advantage of paper-based origami is its easiness of realization. Furthermore, craft paper sheets have 

a very small thickness thus preventing panel thickness accommodation issues when extreme folding 

is achieved. Although very effective, this method can induce some difficulties in quantitative testing 

since the paper-based panels are very flexible. In fact, folding may not only be localized on the creases, 

but also in the panels through flexural deformation. This could lead to difficulty in the experimental 

validation of the underlying theory as the hypothesis of rigid foldability may not hold anymore.  
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[H3] Computer Numerical Control (CNC) milled models  

A more effective method to create origami samples suitable for mechanical testing consists of 

assembling base components such as unit cell strips, panels, and hinges, which are cut by a CNC milling 

machine (such as the Roland MDX 540), as shown in Figure 2B61. The working principle of the milling 

machine concerns material removal through a rotating cutting tool driven by CAD/CAM (Computer 

Aided Design/Computer Aided Manufacturing) software. The base components can be made from 

different materials, such as polymeric (polycarbonate, polypropylene) or metallic (thin aluminum or 

steel sheets). The main advantage of this manufacturing method is its versatility and precision, which 

permits the realization of complicated shapes and multistable origami tessellations. In particular, this 

method allows fine-tuning of the energy landscape together with the mechanical properties of the 

tessellation, by varying crease thickness, panel geometry, and base material46. An attractive material 

to create zero energy creases (free rotating hinges) is Polypropylene since it guarantees excellent 

folding performance and fatigue resistance. On the other hand, if creases with specific rotational 

stiffness are required, they can be achieved by means of solid rubber (for example, silicon rubber)46.  

[H3] 3D printed models 

Recent developments in additive manufacturing technologies have enabled the construction of 

intricate and complex topologies at different scale levels92. In this context, 3D printing represents an 

alternative method to creating origami samples, as shown in Figure 2C. The origami models are built 

layer by layer from a previously prepared 3D CAD file. Various materials and 3D printing technologies 

can be used depending on specific needs. For instance, origami tessellations have been realized by 

Fused Filament Fabrication93,94, Material Jetting95, Selective Laser Sintering96, Stereolithography97,98, 

Digital Light Processing99,100 and, at the microscale, by two-photon polymerization laser lithography101. 

In addition, 4D printing adds the transformation over time (4th dimension) to 3D printing, which has 

been used to create multifunctional shape-morphing and self-foldable origami-based structures and 

materials85,102–105. The main benefit of additive manufacturing technique is its ability to make multi-

material parts during a single printing step, thus avoiding complicated assemblage processes. 

 

 

[H2] Folding and assembly 

Once the manufacturing step is completed, one needs to fold along the creases and assemble the 

folded components to achieve the final origami structure. Developable patterns, such as the Miura-

ori, can be realized by folding a single flat sheet of material along the crease lines. In contrast, non-

developable patterns, such as the Eggbox, can be obtained through the folding and assembling of 

several sub-parts or pieces61. In the case of paper-based origami, the union among different parts is 

usually done using flaps and either double-sided tape or paper glue. On the contrary, assembled 

plastic models are realized by gluing several modular base components. Conveniently, each unit cell 

or component should have several seats and/or extensions to allow an easy assembly.  
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[H2] Sample preparation and checks 

The quality and integrity of the sample is fundamental for the success of the experiments. Some 

discrepancies between theoretical prediction and experimental results are commonly related with 

sample defects such as aging, manufacturing, and fatigue issues. For instance, if a crease is broken or 

damaged, an imperfection is introduced into the tessellation, deeply influencing the experimental 

results. For such reasons, before executing any mechanical test on origami tessellations (for example, 

uniaxial testing), a careful visual sample check should be done in order to verify the integrity of the 

pattern and its actual dimensions at the rest configuration should be verified with measuring devices 

(tape measure and caliper) . In fact, the dimension of the sample at the rest configuration represents 

a common reference point for experiments, theory, and simulations61. Thus, it is an essential 

parameter when load vs displacement experimental data are compared with theoretical or numerical 

simulations (e.g., in MERLIN54) results.  

 

 

[H2] Experimental setups 

Origami tessellations are reconfigurable structures that exhibit simultaneous deformations both in the 

longitudinal and transverse directions. Further, origami systems can be highly stiff in certain directions 

and flexible in other directions81. Hence, different types of experimental apparatus and setups may be 

needed to investigate the behavior of origami structures depending on the nature of deformations and 

loading. Recently, the experimental setups to perform the uniaxial tests have been proposed to 

demonstrate the unique Poisson’s ratio behavior of origami metamaterials61. In this work, it has been 

shown that the gripping mechanism, connecting the ends of the sample to the loading frame, plays a 

key role on the quality of the results obtained from the testing machine. The standard way to connect 

the sample to the loading frame is by clamping its ends to the machine, as shown in Figure 2D. Its 

drawback is that the gripping system prevents the free deployment of the pattern in the transverse 

direction, leading to non-uniform transverse deformation. This is evident by observing the shape 

assumed by the sample during tension and compression testing. In a tension test, the sample deforms 

into a dog bone shape; in compression, it deforms into a barrel shape. The proposed gripping 

mechanism61 consists of a system of rail and sliders that allows proper attachment of the sample while 

permitting free transverse motion during the folding/unfolding process, as shown in Figure 2E.  
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Figure 2: Origami experiments and manufacturing. (A-D) Different manufacturing techniques used to create 

origami tessellation.  (A) Paper and polymer-based origami models via laser cutting 90, (B) CNC milled 

models realized using a milling machine 61, and (C) 3D printed models98. (D, E) Setups adopted to perform 

uniaxial testing on origami tessellation: (D) Standard setup and (E) Saint-Venant setup61. The Saint-Venant 

setup allows the sample to freely expand or contract in the transverse direction during folding and unfolding. 

This effectively prevents the sample from assuming a dog-bone-like shape and instead simulates the behavior 

of a periodic system during uniaxial testing.  

 

Such a system, called a Saint-Venant fixture, eliminates Saint-Venant end effects during uniaxial testing 

experiments. This advanced setup permits a free deployment of the constrained sample, thus ensuring 



 

 14 

that the origami tessellation remains truly periodic even when deformed in a tension or compression 

test. To obtain high resolution quantitative information from experiments, a loading frame machine is 

required for folding/unfolding the origami tessellation. The loading frame should be equipped with a 

load cell and a displacement transducer for recording the applied load as a function of the sample 

length. In order to reduce gravitational effects and avoid out-of-plane instabilities that could arise 

during the experiments, the whole experimental apparatus is arranged horizontally. Moreover, a Teflon 

plate should be placed underneath the sample to reduce friction and stick-slip phenomena. For the 

monitoring of the longitudinal and transverse deformation of the sample, a high-resolution camera 

must be placed orthogonally to the testing platform to record the experiments. This allows recording 

of the motion of a selected array of points, identified by colored markers, via digital imaging correlation 

(DIC) and tracking method. To facilitate the post-processing analysis via DIC, the color of the markers 

should be chosen to enhance the contrast with the tessellation.  

[H2] Data collection and post-processing 

The main data acquired during origami uniaxial testing are the load applied at one end of the sample, 

the length evolution of the sample, and the transversal and longitudinal deformation during the 

folding/unfolding process. A data acquisition system is often used to collect loads and displacements 

using a load cell and a displacement transducer. The acquisition system could be part of the loading 

frame used to perform the test or external to the testing machine. In the former case, the data 

acquisition is more straightforward but not as versatile as in the latter, where there are no limits on 

the number and type of transducers. In the case of an external acquisition system, it is common to use 

a cDaq (by National Instruments) or Arduino systems interfaced with a PC through software written 

either in LabVIEW or MATLAB/Simulink. The analysis of the experimental data (load/displacement) can 

be performed in a spreadsheet (such as Office Excel, LibreOffice Calc, IWork Numbers) or in an 

advanced software (such as Mathematica, MATLAB, or Python). A tailored experimental method is 

needed for monitoring the transversal and longitudinal deformation of the pattern together with the 

execution of the test. For this purpose, a DIC analysis and tracking method is essential for the frame-

by-frame analysis of the recordings of the experiments and for estimating the motion of the markers 

previously located on the vertices of the pattern unit cell. Several strategies can be adopted to perform 

this analysis. The simplest way is manually analyzing a limited number of frames extracted from the 

recorded movie through open-source software (for example, VLC, Quick Time combined with Gimp, or 

NanoCad). If a frame-by-frame analysis of the movie is required, it can be performed by ImageJ 

filament open-source software or through in-house software written in Mathematica, MATLAB, or 

Python.       

[H2] Actuation  

The process of shape morphing in origami tessellations necessitates the utilization of external sources 

for actuation. The most commonly employed methods for actuating origami structures include 

pneumatic actuation and magnetic actuation. However, the emergence of 4D printing has introduced 

the possibility of using stimuli-responsive materials that can respond, for instance, to light or heat. 

  

 

 

 

https://www.videolan.org/vlc/
https://support.apple.com/downloads/quicktime
https://www.gimp.org/
https://nanocad.com/products/nanocad-free/
https://imagej.nih.gov/ij/index.html
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[H3] Fluidic actuation 

Fluidic actuation of origami involves using pressurized air or gas to control and manipulate origami 

structures93. In this context, as the origami samples need to be inflated, they must be made 

impermeable to prevent air leakage. Typically, this is accomplished by coating origami structures with 

a thin layer of polydimethylsiloxane (PDMS) or by manufacturing them using plastic sheets with 

creases engraved onto them. To operate this method, the structure must be linked to an air supply 

system, such as a compressor or a simple air pump. This system allows for the regulation of both air 

pressure and flow rate. Since this actuation approach is tethered, the structure being activated needs 

to be equipped with an inlet for connecting the air source to the origami structure through flexible 

tubing. 

[H3] Magnetic actuation  

This method involves the utilization of magnetic fields to govern and manipulate origami structures, 

which are typically crafted from materials that respond to magnetic forces106,107. This is accomplished 

by integrating magnetic components into the origami structures, which are magnetized beforehand. 

Usually, these magnetic components are created by blending a silicone rubber precursor with specific 

proportioning of magnetic microparticles (NdFeB). Initially, the magnetic characteristics of these 

components must be gauged using a magnetometer. Subsequently, actuation is typically achieved 

using a 3D Helmholtz coil system capable of generating a uniform magnetic field, the direction and 

intensity of which can be altered by adjusting the current flowing through the coils. The primary 

advantages of this method are that it enables untethered and fast control of actuation. 

 

[H1] Results  

Typical properties exhibited by origami tessellations are characterized by “tunability” and 

“programmability”. Tunable properties arise by virtue of the various folded states of the system and 

can be changed through the application of an active stimulus (e.g., force). The compliant folding of 

origami structures enables in situ control of the property they exhibit, making them excellent 

candidates for tunability. Several important mechanical properties like Poisson’s ratio37,43, elastic 

bandgaps87,108, thermal expansion coefficients109, and anisotropic stiffness81,110 were previously 

studied and demonstrated to be tunable in origami metamaterials. Since the folding of origami is 

generally a smooth continuous process, the variation in the properties that are being tuned is also 

gradual. Programmability, on the other hand, refers to obtaining a property of interest based on 

variations in the design (e.g., geometry). This enables abrupt change in the properties of the origami 

tessellation with respect to the change in the programmability parameter45. Programmability 

parameters are typically associated with the geometric features of the panels or local defects that can 

be induced in the origami tessellations. In this section, the theoretical geometric results pertaining to 

kinematics of origami patterns, modeling frameworks of non-rigid origami, and some relevant 

properties (Poisson’s ratio, wave dynamics, and multi-stability) are addressed. 

[H2] Geometry of representative origami patterns   

The configuration of an origami structure is characterized by its crease pattern as well as the dihedral 

angles between panels that define the folded state. The edges of the panels correspond to the folding-

creases or boundaries of the structure, and the points of intersection of the creases are the vertices. 
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The configurational analysis of origami can be carried out using concepts of spherical trigonometry 

that enables us to find direct relations between the dihedral angles of the creases meeting at a 

vertex23, and further determine the degrees of freedom of the vertex. The degrees of freedom of the 

entire origami structure, that may comprise several vertices, can be found using compatibility 

constraints imposed on the creases connecting adjacent vertices. Here we discuss the geometry of 

some widely used origami patterns. 

[H3] The Miura-ori pattern 

The Miura-ori pattern was originally designed for use in space applications such as deployable solar 

arrays62,62. The pattern can also be found in nature, in certain plant leaves111. The Miura-ori is a 

periodic two-dimensional tessellation (or lattice) with each unit cell having four parallelogram shaped 

panels as shown in Figure 3. The Miura-ori pattern is composed of degree-4 vertices where each vertex 

has either three mountain folds and one valley fold or vice versa (three valley folds and one mountain 

fold). The angle 𝛼   denotes the smaller panel angle (Figure 3). When all the panels are rigid, it 

possesses a single degree of freedom. All the dihedral angles between adjacent panels depend on one 

single arbitrary folding angle, such as the crease-angle 𝜙 as shown in Figure 3. The crease-angle 

uniquely describes any partially folded state of the structure. In the fully developed state, all the 

dihedral angles are equal to 𝜋. In the completely flat-folded state, the dihedral angles are either 0 or 

2𝜋 and structure is rigid. The relation between the two crease-angles (𝜙 and 𝜓) of the Miura-ori is 

given by 

cos (
𝜓

2
) sin (

𝜙

2
) = cos 𝛼 

[H3] The eggbox pattern 

The pattern takes the name from its appearance in the partially folded state. The eggbox is a two-

dimensional tessellation formed with two types of degree-4 vertices which are non-developable. One 

of vertices has four mountain (or valley) creases. The other one has two mountains and two valley 

creases. The pattern has parallelogram-shaped panels arranged in a fully symmetric way as shown in 

Figure 3. When all the panels are rigid, the eggbox pattern deforms as a deployable single degree of 

freedom structure. The eggbox pattern exhibits a smooth folding from one flat-folded state, where 

two dihedral angles are 0 and the other two are 𝜋, to the other flat-folded state where the dihedral 

angles swap the values. Similar to the Miura-ori, the relation between the crease-angles (𝜙 and 𝜓) 

of the eggbox is given by 

cos (
𝜓

2
) cos (

𝜙

2
) = cos𝛼 

[H3] The Waterbomb pattern 

The most widely studied waterbomb origami112 comprises of degree-6 vertices, as shown in Figure 3. 

Depending on the tessellation, the degree-6 waterbomb unit cell can fold in different curved 

configurations. Figure 3 shows the tessellation of waterbomb unit cell with four mountain and two 

valley creases intersecting at a common vertex113. In general, the degree-6 waterbomb unit cell has 

three degrees of freedom. However, if the folding mode is restricted to be locally symmetric (four 

mountain creases with the same dihedral angle), then the configuration of the structure at any 



 

 17 

partially folded state can be obtained from a single folding-angle chosen as an independent variable. 

The relation between the folding-angles 𝜉 and 𝛾 is given by114 

tan(
𝜉

2
) = −

1

cos 𝛼
tan(

𝛾

2
) 
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Figure 3: Schematic representation of the fusion of geometry, mathematics, and art through origami 

tessellations. The left column shows the unit cell, which forms the basis of the four tessellations considered here, 

with geometrical parameters dictating their mechanics and configurations. Labels “a” and “b” indicate the side 

lengths, “” denotes the panel angle, and “”, “” and "𝜉", "𝛾 represent the crease angles and the folding 
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angles, respectively. Miura-ori. From left to right: unit cell, unit module, tessellation in a deployed state, and two 

images showcasing different folded states of a physical Miura-ori tessellation. Eggbox. The non-developable 

nature of the pattern illustrated by its unit cell (left) requires that several strips cut from a flat sheet (middle-left) 

be assembled and glued together to obtain the desired tessellation (middle-right). On the right, two images 

showcase different folded states of a physical eggbox tessellation. Waterbomb. From left to right: Unit cell, unit 

module, crease pattern, and folded. Kresling. From left to right: perspective and folded state top views of an 8-

sided polygon unit cell, one-piece crease pattern with reverse crease directions used to create the 4-story Kresling 

tube shown on the right. Label “h” indicates the height of the Kresling unit cell, while the subscript “i” in the 

parameters (h, ) takes on values 0 or 1 for the two stable states.  

 

 

[H3] The Kresling tube 

The triangulated cylinder/tube of the Kresling pattern undergoes non-rigid folding. The tessellation is 

formed by connecting unit cells along one direction as shown in the Figure 3. The crease pattern of a 

single unit cell is shown in Figure 3 and is characterized independently by the parameters 𝑎 , 𝑏 , 𝛼, 

and 𝑛 , where 𝑛 represents the number of edges (or cells) in each unit cell. The parameter 𝑐 is also 

defined as shown in the figure. The unit cell can exhibit bi-stability depending on its geometric 

parameters and materials. The two stable states of the unit cell are denoted as 0 and 1 and the 

corresponding folded configurations are characterized by the twist angles 𝜓0 or 𝜓1, respectively, 

and the unit cell heights ℎ0  or ℎ1 , respectively. The two stable states are characterized by a 

geometric equivalence of the crease pattern parameters 𝑎 , 𝑐 , and 𝛼. Therefore, enforcing these 

parameters to be the same in the two stable states, they can be calculated23 as follows, 

𝛼 = cos−1

(

 
 𝑥0(𝑥0−cot(

𝜋

𝑛
))

√(𝑥0
2+1)[(

ℎ0
𝑏
)
2
(𝑥0
2+1)+𝑥0

2 csc2(
𝜋

𝑛
)]

)

 
 

, 

𝑎  =  𝑏√(
ℎ0

𝑏
)
2
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𝑥0
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𝜋

𝑛
)
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𝜋
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], 

 

with ℎ̃ = (ℎ1 𝑏⁄ )
2 − (ℎ0 𝑏⁄ )

2 . The twisting angles for the two stable configurations are given by 

𝜓0 = 2 tan
−1 𝑥0 and 𝜓1 = 2 tan

−1 𝑥1.  

 

[H2] Structural analysis of origami  
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Some of the pioneering studies on origami structures focused on their rigid origami kinematics, which 

are of key interest for deployable structures and robotic applications. A few well-known software in 

this category includes: the Rigid Origami Simulator that runs a projection-correction algorithm for 

solving linearized compatibility equations [21], the GPU accelerated Origami Simulator [191], and the 

Rhino plug-in Crane [https://dl.acm.org/doi/full/10.1145/3576856].  

 

However, in the last decade, interest in the use of origami for mechanical and civil engineering 

applications such as energy absorption, vibration control, and load-bearing have gained prominence. 

Investigation of origami for such applications requires modeling the non-rigid behavior of origami and 

carrying out structural analysis simulations. Besides shell-based Finite Element Analysis, structural 

analysis of origami is typically carried out using an efficient Reduced Order Model called bar-and-hinge 

model, formally introduced by Schenk and Guest [55], which captures the folding deformations, 

bending of panels, and in-plane stretching of panels. In this model, the panels are replaced by bars 

that are placed along all the creases of the origami pattern as well as the panel diagonals. The stiffness 

associated with folding and panel bending is modeled through rotational springs or hinges between 

the triangulated truss-type panels. Some of the first bar and hinge models55 were formulated to 

capture small deformations of origami tessellations during structural analysis. Later on, improvements 

were made to bar and hinge models to capture various features like isotropic panel stretching81, 

complex panel-bending deformations and large non-linear deformations54. For example, Figure 4A 

shows bending of an eggbox tessellation using the MERLIN software that implements a nonlinear 

mechanics formulation associated with the bar-and-hinge model54. Figure 4B shows representative 

simulation results by MERLIN, obtained from uniaxial tension test of origami tessellations, that show 

good agreement with experimental data. 
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Figure 4: Mechanics of origami structures. (A) The MERLIN software for structural analysis of origami. (B) 

Poisson’s ratio results of the Miura-ori, eggbox, and morph origami metamaterials from theory, experiments 

(all the experiments use 3x7 units), and MERLIN simulations61. The Poisson’s ratio variation for the Miura-ori 

is negative, and for the eggbox is positive. The morph pattern is composed of 7 layers, each having 2 units and 

the Miura-ori mode and 1 in the eggbox mode (see inset), exhibits a Poisson’s ratio switch from positive to 

negative.  (C) Wave propagation in the Kresling tube origami (image adopted from ref. 88). (D) Different 

multi-stable states of the Trimorph origami (image adopted from ref.46).  

 

[H2] Poisson’s ratio  

Poisson’s ratio is an important property that dictates the deformation of materials. The magnitude of 

Poisson’s ratio of linear elastic isotropic materials is restricted within a small range from -1 to +0.5. 

Interestingly, origami metamaterials can exhibit Poisson effects that vary significantly with the folded 

geometry of the structure37, and beyond the conventional range as they are typically not isotropic. For 

example, Miura-ori pattern can exhibit in-plane Poisson’s ratio values all the way from negative infinity 

to zero achieving the extreme values when it is in a developed state or the flat-folded state. The 

negative Poisson effect in Miura-ori makes it an auxetic metamaterial. On the other hand, the Eggbox 

pattern displays tunable in-plane Poisson’s ratio values from zero to positive infinity as it folds from 

one flat-folded state to the other flat-folded state. The Poisson’s ratio results for Miura-ori and eggbox 

origami metamaterials are shown in Figure 4B, where good agreement between theory and 

experiments are obtained. Recently, novel origami patterns were discovered, namely Morph43 (see 

Figure 4B) and Trimorph46, which can exhibit any real value of Poisson’s ratio (negative infinity to 

positive infinity) depending on their folded configuration. Origami metamaterials exhibit a wide 

variation in the value of Poisson’s ratio as they are being folded or deformed. However, recent 
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research has shown that it is also possible to design origami patterns in such a way that the Poisson’s 

ratio value is held nearly constant under large deformations115. All these results indicate the capability 

of origami metamaterials to be programmed or tuned to display desired Poisson effects. 

[H2] Wave dynamics  

Origami metamaterials have two major features that are useful for applications related to wave-

propagation and vibrations. Firstly, the high contrasting levels of stiffness in the system in terms of 

crease folding, panel bending, and panel stretching can lead to elastic bandgaps, which are frequency 

ranges with no wave-propagation. Secondly, the frequency range of the bandgaps and other related 

characteristics can be easily tuned by compliant folding of origami. A mathematical technique called 

Bloch wave reduction can be employed to carry out wave propagation studies in periodic media such 

as origami tessellations87. While typical calculations to study dynamics of tessellated structures could 

involve considering several unit cells, the Bloch wave approach reduces the calculation effort to a 

single cell within the periodic system by virtue of its translational symmetry. Unlike several lattice 

structures, where the structural interactions are restricted to the nearest neighbouring nodes of a unit 

cell, origami metamaterials may exhibit nonlocal structural behaviour as noted in previous research87. 

Hence, the application of Bloch boundary conditions should be careful enough to ensure that such 

(beyond nearest neighbour) nodal interactions are taken into account for accurate prediction of 

dynamic properties. Using such an approach, researchers have studied wave dynamics and bandgap 

structures in origami metamaterials. For example, modal characteristics of standard Miura-ori and 

Eggbox patterns revealed the presence of elastic bandgaps that are tunable by virtue of their folded 

configuration and programmable by virtue of their panel geometry87. That is, the frequency ranges of 

the bandgaps obtained could be controlled (in theory) by subjecting the origami tessellation to folding, 

or by re-designing it to have different panel sizes or angles. In another study on wave dynamics, one-

dimensional origami-based lattice structures with triangulated cylinders were designed and 

experimentally found to exhibit rarefaction waves for applications in impact mitigation88, as shown in 

Figure 4C. There are two aspects that influence the tunable dynamic properties of origami lattice 

structures. One is the tunable geometry of the system by virtue of folding. The other is the mass and 

stiffness of panels and hinges. The former aspect is typically independent of the base material with 

which the origami structure is made of. The latter aspect depends on the material used and therefore 

influences the natural frequency ranges and to some extent the modal characteristics. Hence, the 

material should be chosen based on the target frequencies relevant to the engineering application. 

However, it is expected that the tunability of the dynamic properties can be achieved irrespective of 

the choice of base material. 

[H2] Multi-stability  

Some origami structures experience multiple stable states such that each of them locks a particular 

configuration. These structures with multiple stable states can serve as basic unit cell for architected 

materials, creating properties that differ from those of traditional materials. For example, the snap-

through action (i.e., the deformation process between different stable states) of the Kresling origami 

can be activated by non-contact forces, such as those generated by magnetic fields59. In addition, the 
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multi-stable origami concept can be used to create a tessellation with switchable mechanical 

properties: the Trimorph pattern made of a tessellation of tristable origami unit cells, can switch 

between different metastable phases to produce distinct stiffness, anisotropy, and Poisson’s ratio, as 

shown in Figure 4D46.  

Conceptually, the multi-stability in origami structures usually comes from two types of incompatibility. 

The first type is the incompatibility between the stress-free states of the folding hinges between the 

origami panels. This happens when the zero energy, or stress-free, state of the folding hinges of an 

origami are not compatible with its rigid folding kinematics, such that the folding hinges can never be 

all stress-free at the same time116. The second type is the incompatible panel geometries that forbid 

rigid folding, such as the square twist, Kresling pattern, and many others10,45,48,59,80,88. Overcoming rigid 

foldability requires bending and stretching of the panels, which creates energy barriers between 

stable states where panels are usually flat and unstretched. Both types of incompatibility could be 

present in one pattern, at the same time, such as in the Trimorph pattern, in which the “line defect” 

is caused by the first source, while the “point defect” is caused by the second source46.  

 

[H1] Applications  

Due to the inherent cross-disciplinary nature of its design principles, origami is a rich source of 

inspiration for creating cutting-edge materials and structures with a broad range of applications. A 

non-exhaustive list includes applications in engineering14, physics43, material science37, 

microrobotics117, waveguiding118, impact mitigation88, space structures22, solar technologies119, and 

artificial muscles120. Some distinguishing characteristics of origami are scalability and high 

deployability51,117,121,122. The former broadens the spectrum of applications across multiple length 

scales as the behavior of origami structures is primarily governed by geometry in several cases. The 

latter allows achieving extremely reconfigurable shapes and tunable mechanical properties in static 

and dynamic regimes. Thus, origami principles can inspire design of materials and structures with 

myriad applications120,123–125. Broad engineering areas of application that were inspired by origami in 

recent years are discussed below. Specifically, origami has generated ideas for futuristic infrastructure 

development, has inspired the creation of several artificial materials concepts, including 

metamaterials, has been used to create soft robots and medical devices, and has enabled efficient 

transport of large structures in space applications. It is to be noted that the application areas discussed 

below are not mutually exclusive. Applications towards one topic (e.g., mechanical metamaterials or 

soft robotics) can have relevance to applications related to another topic (e.g., infrastructure or 

medical devices). 

 

[H2] Sustainable and resilient infrastructure 

Novel origami-based mechanisms have been implemented in architecture to create responsive 

building skins and adaptive diagrid façades capable of maximizing solar shading, acoustic 

performance, energy efficiency, and structural performance119,126. Usually, the energy efficiency 

interventions on buildings, such as wall insulation, once put in place, remain fixed over time regardless 

of the climatic conditions. On the contrary, the use of kinetic origami-based building skins can lead to 

maximizing energy efficiency at all hours of the day, optimizing the relation between internal comfort 
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and exterior climate conditions. For example, some studies showed that kinetic origami-based facades 

optimize daylight by approximately 50% from March to September and about 30% from October to 

February, compared to the case of static façades, thus improving indoor visual and thermal 

comfort127,128. Another example is the futuristic shape-adaptive shading origami-based system 

installed on the facades of the Al Bahar Towers, located at the financial center of Abu Dhabi129,130. The 

motile façade installed on these towers reduces the internal temperature by 50% with a substantial 

decrease in energy consumption for air conditioning and diminishing CO2 emissions by 1,750 tons per 

year131. Furthermore, origami-based systems are starting to be used to create kinetic solar arrays 

capable of tracking sun motion and, thus, maximizing solar energy intake132,133.  

 

Origami principles of reconfigurability and deployability can offer a valuable contribution to creating 

robust and resilient buildings potentially minimizing material usage, thus leading to a dramatic 

reduction of embodied CO2 emission128,134,135. In this context, there have been several efforts by 

researchers to obtain large-scale deployable structures inspired by origami behavior. For example, 

pneumatic and multistable origami structures have been shown to allow the design of large-scale 

structures that can be deployed from a very compact configuration, as shown in Figure 5A (top)58. 

Another example involves lightweight canopy structures that can be realized by coupling and stacking 

of origami tubes in different directions, as shown Figure 5A (middle)81. This leads to deployable roofs 

with high out-of-plane stiffness. Other researchers used modified geometries to create novel 

accordion-type shelters with improved structural stability and stiffness, as shown in Figure 5A 

(bottom)136.  

[H2] Mechanical metamaterials 

Metamaterials are artificial materials that can exhibit exotic properties superior to those of 

constituent materials137. Mechanical metamaterials are a sub-class of metamaterials where the 

properties of interest are mechanical in nature, such as acoustic, thermal, or elastic. Typically, 

metamaterials are obtained by repeating a unit cell whose geometry is designed once and for all and 

cannot vary over time. Contrastingly, origami can transform its geometry continuously from a folded 

to an unfolded configuration, thus widening the design space. While the discussion on metamaterials 

in the previous sections focused on aspects of modelling, analyzing, or understanding the behavior of 

origami structures in general, here, we present the broad range of contexts within which origami 

concepts were applied to create mechanical metamaterials. Since metamaterial properties are strictly 

related to the unit cell geometry, origami permits achieving extremely tunable and reprogrammable 

mechanical properties138–140. Moreover, the relationship between stiffness of the panels and the 

creases provides opportunities to design the energy landscape of the resultant metamaterials141–143. 

This is useful to attain multistability, self-deployment, or mechanical computing systems144. Origami 

design principles have also been successfully applied to conceive origami-based metamaterials 

exhibiting auxetic behavior37,145,146, tunable Poisson’s ratio80,82, self-locking147,148, high strength-to-

weight ratio69,149, and tunable stiffness83,143,150,151. Some researchers have shown that, by properly 

designing kinematic paths, it is possible to achieve lockable and flat-foldable modes57,82 (see Figure 

5B). In addition to extreme static mechanical properties, origami-based metamaterials permit the 
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achievement of tunable dynamic properties. For instance, the morphing of the origami tessellation 

leads to controlling electromagnetic or elastic waves152,153, deflecting light154, and opening and 

widening bandgaps87,118,155–157. Origami metamaterials can also exhibit interesting coupling behaviors 

that are not typically observed in conventional materials, such as shear-normal coupling46 and 

compression-twist coupling effects158. 

 

 

Figure 5: Origami applications. (A) Examples of origami-based canopies and shelters58,81,136. (B) Multiple 

kinematic paths leading to lockable and flat-foldable modes in 3D origami-inspired metamaterials82. (C) 

Omnidirectional origami robot arm obtained by assembling several Kresling basic units, controlled via magnetic 

actuation159. (D) Miniature fluid-driven origami-inspired artificial muscle120.  

 

[H2] Soft robotics 

In recent years, origami has been a source of inspiration for several applications in robotics. Soft 

robotics applications require gradual changes in stiffness and significant reconfigurability. Origami 

structures are well known to exhibit multistability, tunable stiffness, and shape morphing and hence, 

can meet the design requirements for soft robotics. Exploiting origami-based design principles, robotic 

arms have been realized through the uniaxial repetition of Kresling unit cells capable of 

multidirectional morphing, grasping objects, and exploring hard-to-reach areas via magnetic 

actuation, as shown in Figure 5C59,106,159,160. Within this framework, origami morphing capabilities allow 
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the realization of grippers161, artificial hands that gently grasp fragile objects without breaking them162–

164. Origami design principles can also be a source of inspiration to create programmable artificial 

muscles with multidimensional actuation120. Origami robots capable of crawling, jumping, and 

swimming93,159  indicate the potential for advanced applications in this field. 

 

[H2] Medical devices 

The progress in rapid prototyping technology and the rising demand for increasingly miniaturized tools 

fostered the implementation of origami design in the biomedical industry for in vivo or ex vivo 

purposes. The scalability, high deployability, and extreme packaging capabilities of origami make them 

particularly suitable for minimally invasive medical devices165,166. The auxetic nature of several origami 

patterns permits the conception of novel surgical tools that can access the human body through a 

small incision, travel in a very compact state to the intervention destination and deploy in their 

functional shape to execute the surgery. Origami designs have been explored for facilitating the 

execution of biopsy167, MRI-guided radiofrequency ablation (RFA) and catheter insertion168, or 

inspection of hard-to-reach sites169. Origami-based deployable surgical reactors have been designed 

for potential use in face-lift operations170 and adopted to create novel orthopedic implants171,172, and 

tissue scaffolds173,174. Origami-based self-folding microrobots have been realized to enable 

encapsulation, gastrointestinal microsurgeries175, and drug delivery176. Origami-based structures have 

been conceived to assist retinal microsurgery121,177 and as a support system for optimizing the 

insertion of flexible instruments in robot-assisted procedures (RAS)178. Within this framework, 

origami-based microgrippers have been designed for the capture and retrieval of objects and 

biopsies179,180, minimizing invasiveness and potential human errors.  

 

[H2] Space technology 

Space structures, such as solar arrays or satellites are large scale structures that need to be compactly 

transported and deployed in the target orbits. Efficient transport of such structures requires them to 

be of light weight and to be folded into a small volume. Origami patterns can be implemented in the 

design of extremely lightweight, densely packed membranes and other devices to be deployed, once 

placed at target locations in space. Deployable membranes can serve as solar sails, propelled by the 

solar wind, for exploration missions; as solar power arrays for satellites, for solar energy collection, 

conversion and transmission; as reflectarray antennas; space telescopes; and for protective 

shields181,182. The Miura-ori pattern was a key invention that enabled compaction and deployment of 

space structures33,62,183,184. Designs of origami-based solar sails have evolved over years, for example, 

with a different deployment technique which uses radial segments, wrapped in spirals around a 

central hub, that unfold tangentially185. The pattern resembles a moonflower just after opening, and 

is nicknamed "origami flasher"22,133,186,187. Another variant, a 4-quadrant square solar sail is extended 

in the diagonals by telescopic booms. The recent Kresling pattern1,2,188,189, allows cylinders to be 

actively folded and unfolded, like bellows, and is applied to the Sunshield project of the IXO-Space 
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Telescope190, the Mars Rover drill protection, and for Origami Antennas of Space-ground 

communication116.  

 

[H1] Reproducibility and data deposition  

[H2] Reproduction of Samples  

Physical samples of origami are made with various methods. In general, the kinematics of origami 

structures is primarily driven by its geometry and is less sensitive to the materials being used, which 

is one of the many virtues of origami designs. However, deviations in the geometric structure, such as 

misalignment in the crease pattern, could lead to significant discrepancy from expected behavior. In 

a previous study, experiments and numerical simulations have shown that geometric imperfections 

could hinder the foldability of origami structures and increase its compressive stiffness90. This effect 

is less significant when the origami is made with compliant (or soft) materials but becomes severe for 

rigid materials. For Miura-ori, the square residual of the Kawasaki-Justin condition (i.e., Kawasaki 

excess), correlates approximately linearly with the increase of stiffness of imperfect Miura-ori 

structures90. Small geometric imperfections stiffen the originally programmed mode but generally do 

not alter the mode shape. 

 

Data Deposition. Origami structures are usually shared in data formats that store meshes, which must 

include at least two pieces of information: the coordinates of the vertices (or nodes); the groups of 

vertices that belong to each face (or panel). A typical example of such format is the OBJ format, which 

is supported by the Rigid Origami Simulator191, the Origamizer192, and MERLIN54. Although STL format 

is the most used one for 3D printing and animation editing, it is not suitable for origami because all 

faces in STL must be triangular, while polygonal faces are common in origami designs. Recently, 

researchers formulated the FOLD (Flexible Origami List Datastructure) format that is dedicated to 

origami design, with an extension “.fold”193. Compared to the standard industrial formats, the FOLD 

format not only stores the static information of an origami design, but also allows “frames” to be 

collected that depict the folding process of an origami. For flat-folded origami, the FOLD format 

includes the topological stacking order of faces that overlap geometrically to distinguish different 

folded states. The FOLD format is gradually becoming popular among the origami community. Origami 

Simulator20 and MERLIN54 support the FOLD format. Note that all formats mentioned above apply to 

both partially folded origami and its flat crease pattern. 

  

[H1] Limitations and optimizations 

Most current developments in origami engineering are based on adaptation of some existing origami 

patterns to certain applications or are those that gained attention by serendipitous discovery. First 

principles-based systematic design of new origami patterns that can exhibit exotic engineering 

properties is a challenging problem. Although there have been developments in the recent years 

towards inverse design of origami for engineering applications, they are still in rudimentary stages. 

The theoretical or numerical design of origami patterns for target requirements is an active area of 

research194–196 and more developments are needed in this direction, to make origami engineering 

versatile across applications. The challenges arise from two contexts – one is related to the choice of 
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design variable space and the other is related to the choice of engineering properties that are 

explored. Further, in most cases, the designs must satisfy requirements related to developability, flat-

foldability, or rigid folding, which significantly constraints the solution space. In terms of applications, 

design of crease hinges, especially in the context of thick origami is not systematically investigated 

and hinders large scale and reliable use of origami structures made from thick sheets of material or 

thick panel prisms.  

 

Behavior of origami patterns is significantly influenced by the presence of imperfections in their 

geometry. Most studies on origami patterns demonstrate the results through prototypes made from 

regular symmetric structures with no imperfections. However, presence of geometric imperfections 

in the patterns can lead to unexpected behavior. Hence, extensive studies by incorporating 

imperfections due to manufacturing defects should be performed while investigating the suitability of 

origami for applications. 

 

Limitations of efficient manufacturability of origami structures also exist, especially in the context of 

non-developable patterns. Most current methods involve manual assembling of individual modules to 

form the final tessellated structure. Further, in the context of developable patterns, the tessellated 

structures need manual folding through creases marked on the entire sheet. Advanced manufacturing 

techniques such as 3D printing can be investigated to seek potential alternatives to these limitations. 

 

Exploring microscale sample experimentation remains a relatively unexplored territory demanding 

further investigation. While origami structures are believed to exhibit scale-independent mechanical 

properties, suggesting that larger-scale experiments should replicate the mechanical behavior of 

microscale origami, the process of miniaturizing origami to this level introduces significant 

complexities due to the changing underlying physics governing the mechanical response at different 

scales. These complexities encompass various factors, including the substantial impact of Van der 

Waals forces on the mechanical response of microscaled origami, the intricate challenges associated 

with manufacturing due to limited materials and manufacturing technologies capable of achieving 

nanometer precision, as well as the development of miniature testing platforms. 

 

Origami structures can be highly kinematic in nature with multiple degrees of freedom. Through 

analysis of the structure’s mobility should be carried out before adapting origami for applications. If 

unwanted modes of mobility are found to exist, appropriate constraints should be applied on the 

structure to lock or guide it into desired configurations. 

 

[H1] Outlook  

While origami science is a more mature field, origami engineering has the potential to revolutionize 

the fields of engineering and design by enabling the creation of complex, lightweight, and adaptable 

structures across scales, which can be manipulated and deployed in various applications. Beyond 

modeling and manufacturing of origami, automated folding and actuation can lead to major advances 
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especially with multi-physics considerations (for example, magnetic actuation59,197). Thus, origami 

engineering has potential for continued advances in several fields ranging from robotics, space 

structures, architecture, and medical technology. The latter field holds great potential, especially as 

medical Doctors and Engineers collaborate in a true interdisciplinary fashion including actual 

experiments in animals with potential for further findings in humans. Modeling of an origami structure 

is problem specific and therefore, a single framework may not be readily applicable. Therefore, 

researchers have adopted context specific modeling approaches for origami. As origami ideas 

permeate different fields, several origami modeling frameworks and packages are expected to be 

developed in the future. Alongside, one could expect a variety of design approaches to also be 

developed. The material used to make the origami may play a key role and challenge the development 

of manufacturing processes for origami-based structures. While many recent studies on origami use 

paper-based models to demonstrate ideas, real applications, depending on the length scale of 

interest, could use a variety of materials ranging from polymeric-materials at micron scale101 and 

construction materials like steel or concrete71 that could help reshaping our infrastructure toward 

more sustainable solutions. Another fascinating material to be explored are biological materials and 

living tissues, which could revolutionize the medical field198.  
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