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Abstract

An elastic disk is coated with an elastic rod, uniformly prestressed with a tensile or compressive
axial force. The prestress state is assumed to be induced by three different models of external
radial load or by ‘shrink-fit’ forcing the coating onto the disk. The prestressed coating/disk
system, when loaded with an additional and arbitrary incremental external load, experiences
incremental displacement, strain, and stress, which are solved via complex potentials. The
analysis incorporates models for both perfect and imperfect bonding at the coating/disk in-
terface. The derived solution highlights the significant influence not only of the prestress but
also of the method employed to generate it. These two factors lead, in different ways, to a loss
or an increase in incremental stiffness for compressive or tensile prestress. The first bifurca-
tion load of the structure (which differs for different prestress generations) is determined in a
perturbative way. The results emphasize the importance of modelling the load and may find
applications in flexible electronics and robot arms subject to pressure or uniformly-distributed
radial forces.

Keywords Prestressed coating of cylinders; Perfect and imperfect contact; Models of radial
loadings.

1 Introduction
Thermo-mechanical and chemical treatments of materials such as surface hardening, welding, and
contact with gears, rolling bars, or manufacturing tools often induce residual stresses in materials
and components. Depending on their nature and how they interact with applied loads, these
stresses can sometimes be beneficial or detrimental to stiffness and strength [1–5]. In particular,
internal stresses in coatings and thin films are recognized as the primary cause for loss of mechanical
and adhesive properties, possibly leading to failure. In other circumstances, residual stresses can
improve the mechanical performance of a piece, as happens for instance in the well-known case
of tempered glass. As related to growth and sometimes remodelling, residual stresses are present
in many biological tissues [6], and particularly in arteries [7], where they strongly influence the
mechanical response.

Research on soft materials for applications in tissue mechanics and soft devices has fostered
research on residual stresses (defined as stress states persisting even in the absence of external
loads) in nonlinear elasticity. This field has been theoretically developed in [8, 9], while wave
propagation (concerning the possibility of detecting residual stresses) has been analysed in [10–14].
Finally, simple shear, azimuthal shear, and torsion of a cylinder have been investigated in [15].

The present article investigates the response to incremental external load of a mechanical
system involving a prestressed and curved element. The prestress can be residual stress induced
by thermal loading or by a forced insertion of a piece into another, or can be generated by an
external load, here considered of three different types (hydrostatic pressure, centrally directed,
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and dead). Although they generate the same prestress in the curved element, the three different
loadings produce different incremental effects, thus leading to different incremental stress states
when perturbed through an additional incremental load, externally applied to the system. The
mechanical system considered here is a linear elastic disk coated by a circular elastic rod, assumed
axially inextensible and prestressed in tension or compression, in an arrangement similar to that
analysed in [16], so that the treatment includes perfect and imperfect bonding (the latter meaning
unprescribed slip in the tangential direction) between rod and disk. The elastic rod is modelled
within the (exact) second-order theory of curved beams. The inner disk is solved via Kolosov-
Muskhelishvili complex potentials, thus leading to a general solution, holding for every possible
external load increment. The latter is assumed to be superimposed to a possible pre-existing radial
loading, which generates the prestress state in the coating. The analysis shows that the prestress
has a strong effect on the stiffness of the coating/disk system, which increases (decreases) for
tensile (compressive) axial internal force. The decrease of stiffness at the increase of compressive
axial force in the annular rod leads to a perturbative determination of the buckling condition
obtained in [16] via bifurcation analysis. These findings are not surprising, but have previously
been analytically investigated only on geometries simpler than that considered here, typically,
representing a stack of layers [17–19], or for circular geometry, but perfect bonding between disk
and coating and only pressure loading [20]. The set-up of the mechanical problem proposed here
is sufficiently simple to make an analytical solution viable, which would be otherwise awkward.
However, the circular geometry analysed here represents a model problem for the determination
of the influence of prestress or residual stress on the behaviour of a curved elastic system. The
presented results may find applications in the mechanics of coated fibres or stented arteries.

2 The coating and the disk
The equations governing the behaviour of the annular rod modelling the coating and of the inner
elastic disk are summarized below, the interested reader can find a detailed derivation in [16, 21].

2.1 Statics and kinematics of a circular rod
The circular rod of radius R considered here is modelled as axially inextensible and unshearable,
involving a linear relationship between moment and curvature, ruled by the bending stiffness B
(equal to the product between Young’s modulus, Ec, of the rod and the second moment of inertia
of its cross-section, J). The elastic disk is made up of a linear isotropic elastic material deformed
in plane strain or plane stress, characterized by the Kolosov constant

κd = 3− 4νd for plane strain, κd =
3− νd

1 + νd for plane stress, (1)

where the superscript ‘d’ stands for ‘disk’, having Poisson’s ratio equal to νd.
In the plane spanned by the two orthogonal unit vectors e1 and e2, the elastic rod, circular

in its undeformed configuration, is assumed for the moment to undergo a large deformation. The
obtained nonlinear behaviour will be reduced later to the linearized incremental response, needed
to account for the presence of prestress. The rod is parametrized by the arc length s, singling out
the unit tangent vector t0, the principal unit normal n0, and the curvature κ0 at every point x0 of
the reference configuration, together with the unit vector m0 = t0 × e3, where e3 = e1 × e2 is the
out-of-plane unit vector. In polar coordinates, the displacement u and its derivative with respect
to s can be defined as

u = ur m0 + uθ t0,
∂u

∂s
=

(
∂uθ
∂s

+
ur
R

)
t0 +

(
∂ur
∂s

− uθ
R

)
m0, (2)

so that, in the deformed configuration of the rod, the above-defined kinematic descriptors become

t = t0 +

(
∂ur
∂s

− uθ
R

)
m0, κn =

(
1

R

∂ur
∂s

− uθ
R

)
t0 −

1

R
m0,

m =

(
uθ
R

− ∂ur
∂s

)
t0 +m0,

∂m

∂s
= t0 +

(
uθ
R

− ∂ur
∂s

)
m0,

(3)
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where ds = Rdθ, being θ the circumferential angle measured positively in a counter-clockwise
direction, as depicted in Fig. 1.
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Figure 1: Left: The elastic disk coated with a circular elastic rod and subject to an external (uniform and radial)
load, Π, to which an incremental load, q̇β , is superimposed. Right: stress components transmitted between coating
and disk. The incremental load has tangential and radial components q̇β and ṗβ load, respectively, see equation
(7)1. The radial external load Π can assume three different forms: (i.) hydrostatic pressure, (ii.) centrally directed,
and (iii.) dead. All three loads Π may generate the same axial prestress N0 in the circular rod, the difference
between them only appears in the increment.

2.1.1 Incremental equilibrium of the coating for three different radial loads

As illustrated in Fig. 1, the coating is modelled as a circular rod, which is subjected in its unde-
formed configuration to a uniform load Π, acting radially and so producing only a uniform axial
prestress, N0, without shear force T0 and bending moment M0,

N0 = −ΠR, T0 =M0 = 0, (4)

where Π is positive when directed towards the centre of the rod, in which case N0 is negative, i.e.
compressive. From the circular reference configuration, superimposed incremental deformations
are analysed as induced by the application of an external incremental load q̇β , to be detailed
below. Assuming the inextensibility of the rod, the incremental kinematics is governed by

∂5u̇r
∂θ5

+

(
2 +

ΠR3

B

)
∂3u̇r
∂θ3

+

(
1 + 2

ΠR3

B

)
∂u̇r
∂θ

− ΠR3

B
u̇θ +S = 0, u̇r +

∂u̇θ
∂θ

= 0, (5)

where a superimposed dot denotes an incremental quantity and the external load is specified
through

S = −R
4

B

(
∂q̇

∂θ
·m0 + 2q̇ · t0

)
, (6)

function of the incremental load q̇ applied to the rod. The latter is not only due to q̇β , but also
contains components due to both the incremental interaction with the disk (which produces incre-
mental traction when perturbed) and how the specific type of radial load Π ‘reacts’ to incremental
deformation. In particular, the annular rod enclosing the elastic disk is subject to a uniform radial
load Π, selected between different types, which may be generated by the environment external to
the disk/coating system or may be internally generated as a traction exchange between coating and
disk, consequent to a shrink-fit or thermal operation. In particular, the radial force distribution Π
may be as follows.

• Applied by the external environment on the outer surface of the coating. This Π can be of
three different natures: (i.) hydrostatic pressure, (ii.) centrally directed (towards the initial
centre of the disk), and (iii.) dead.

• Internally generated through traction exchange between coating and disk as induced by
a preliminary shrink-fit process or differential variation of temperature between disk and
coating. The account of this process enables the determination of the specific value of Π to
be used for incremental analysis where it is treated as a dead load, type (iii.) above.
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The above loads define the reference configuration for the coated disk system, so that the rod is
uniformly prestressed by an axial force, which can be either tensile or compressive, while the inner
disk is either unloaded or slightly loaded through a uniform mean stress. This reference configu-
ration is perturbed through the application of an additional incremental external load (preserving
the overall equilibrium of the coating/disk system) q̇β , with tangential and radial components q̇β
and ṗβ (Fig. 1),

q̇β = q̇βt0 − ṗβm0. (7)

The perturbation induces an incremental change in the reference configuration, so that the
external load Π and the internal tractions at the disk/coating contact also produce increments of
loads for the rod. Summing up all these contributions, the incremental load for the rod, q̇, results
as the sum

q̇ = q̇Π + q̇β + q̇σ, (8)

where, introducing M to rule the shear transmission properties at the interface (M = 1 for perfect
bonding between disk and coating or M = 0 for slip contact),

q̇σ = −b (σ̇rrm0 + M σ̇rθt0)r=R , (9)

is the incremental traction exchanged between disk and coating, where b is the out-of-plane thick-
ness of the coating and σ̇rr and σ̇rθ are the incremental stress components on the boundary of
the disk. The term q̇Π in eq. (8) describes the behaviour of the radial load during the increment,
which may vary according to the specific dependence postulated for the force on the deformation.
The following three incremental loadings are included in the formulation, each defining the term
q̇Π as

q̇Π = Π×



(
∂u̇r
∂s

− u̇θ
R

)
t0 when Π is a hydrostatic pressure (i.)

− u̇θ
R

t0 when Π is a centrally directed load (ii.)

0 when Π is a dead load (iii.)

(10)

and hence, the term S in equation (6) becomes

SΠ =
ΠR3

B
×


−∂u̇r
∂θ

+ u̇θ when Π is a hydrostatic pressure (i.)

u̇θ when Π is a centrally directed load (ii.)

0 when Π is a dead load (iii.).

(11)

The hydrostatic pressure is a well-known type of load, which often can simply be realized,
while a centrally directed load, passing through a fixed point (the centre of the circular ring, in the
present case), requires a rather complicated realization, for instance, through inextensible cables.
The most complicated loading condition for a circular geometry is the simpler for a rectilinear
rod, namely, the dead loading. This can hardly be realized in a circular geometry, except when,
instead of an external load, the prestress N0 in the rod is generated through a thermal variation
(in the presence of a mismatch in the thermal expansion coefficients of disk and rod) or a ‘shrink-
fit’ forcing of the coating on the disk. In this case, a residual stress, rather than a prestress, is
generated, producing a radial pressure Π on the coating, but the equations governing the problem
become the same as the dead load, so that Π̇ = 0.

2.2 The disk coated with the prestressed rod
2.2.1 Incremental applied load on the disk/coating system

Concerning the problem sketched in Fig. 1, the disk is characterized by a shear modulus µd, Lamé
constant λd, Young’s modulus Ed, Poisson’s ratio νd and it is coated along its boundary L by the
circular rod introduced in the previous section.

In a polar coordinates system (er, eθ), the incremental displacement of a point of the disk can
be represented as

u̇d = u̇d
r er + u̇d

θ eθ, (12)
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where ud
r and ud

θ are radial and tangential components.
Two initial stress configurations will be considered for the disk/coating system, before an ad-

ditional incremental load, q̇β in Fig. 1, is applied on its boundary. These are:

1. The radial load Π is acting on the external surface of the coating and, as a consequence, a
state of prestress is produced (in terms of the internal force N0) in the coating, but inside
of the disk the material remains unstressed, because the coating is modelled as an axially-
inextensible rod, carrying N0 without deformation.

2. A uniform radial load is not applied on the external, but on the internal surface of the
coating, where a radial force distribution Π exists, acting on both coating and disk with an
opposed sign, as a consequence of a previous ‘shrink/fit’ or a thermal mismatch operation
on the disk/coating system. This operation is assumed to generate a strong axial force N0

in the coating, but to leave only a weak state of stress inside of the disk (that will be simply
summed to further incremental stress).

In the two above cases (1)-(2), the stress in the elastic disk is either null or assumed small
before the incremental deformation occurs. In this circumstance, the equations of finite elasticity
reduce to the linear theory, so that the incremental response of the disk is governed by Hooke’s
law

σ̇ = λd(trD) I+ 2µd D, (13)

where D = (∇u̇ − ∇u̇T )/2 is the Eulerian strain incremental tensor, and the increments in the
first Piola-Kirchhoff and Cauchy stresses coincide, Ṡ = σ̇. Note that in the above case (2) the
incremental solution has to be summed to the state of prestress in the disk, while in both cases
the incremental solution is superimposed on the prestress in the annular coating.

In summary, the elastic disk is subject to incremental tractions, transmitted from its interaction
with the coating. An incremental load, q̇β in Fig. 1, is applied to the latter. This load is summed
to a previously-applied and uniformly-distributed radial load, Π in Fig. 1, which may be induced by
an either external or internal agent to the system. When applied from the external environment,
the radial force distribution Π does not produce any deformation in the disk and in the coating,
due to the assumption of inextensibility of the latter, where an axial prestress, N0 in Fig. 1 is only
generated. Alternatively, the state of prestress is produced by some shrink-fit operation, generating
an internal radial load Π, which induces a prestress in the coating and is assumed to leave the
elastic disk only weakly prestressed. In all cases, the effects of the prestress are implemented in
the rod forming the coating, which obeys the linearized equations governing prestressed circular
rods, while the elastic core inside the coating reacts linearly without a direct effect of prestress.
The elastic core may be either fully connected to the coating or only radially bonded, to realize
therefore a ‘slip contact’.

Implementing the incremental load (8) in equation (5) leads to the equations governing the
incremental kinematics of the coating in contact with the disk

∂5u̇c
r

∂θ5
+

(
2 +

ΠR3

B

)
∂3u̇c

r

∂θ3
+

(
1 + 2

ΠR3

B

)
∂u̇c

r

∂θ
− ΠR3

B
u̇c
θ +SΠ +Sσ +Sβ = 0,

u̇c
r

R
+
∂u̇c

θ

∂s
= 0,

(14)

where the superscript ‘c’ stands for ‘coating’ and

Sj = −R
4

B

(
∂q̇j

∂θ
·m0 + 2q̇j · t0

)
, j = Π, σ, β. (15)

The derivatives involved in equation (15) assume the forms

∂q̇σ

∂s
= −

(
M

∂σ̇rθ
∂s

+
1

R
σ̇rr

)
r=R

t0 +

(
M

R
σ̇rθ −

∂σ̇rr
∂s

)
r=R

m0,

∂q̇β

∂s
=

(
∂q̇β

∂s
− ṗβ

R

)
t0 −

(
∂ṗβ

∂s
+
q̇β

R

)
m0,

(16)
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while the terms Sσ and Sβ in equation (15) become

Sσ =
R4b

B

(
R
∂σ̇rr
∂s

+ M σ̇rθ

)
r=R

, Sβ = −R
4

B

(
−∂ṗ

β

∂s
+ q̇β

)
. (17)

When the coating is either perfectly bonded to the disk or radially connected but tangentially
disconnected, the following boundary conditions (displacement continuity in the former case, partial
continuity and vanishing of shear stress in the latter) have to be imposed, respectively,

u̇c
r = u̇d

r |r=R, and u̇c
θ = u̇d

θ |r=R︸ ︷︷ ︸
perfect bonding

or σ̇rθ|r=R = 0︸ ︷︷ ︸
slip contact

. (18)

Moreover,the governing equation (14)1 can be rewritten as

∂5u̇c
r

∂θ5
+ 2

∂3u̇c
r

∂θ3
+
∂u̇c

r

∂θ
+

ΠR3

B

(
∂3u̇c

r

∂θ3
+ 2

∂u̇c
r

∂θ
− u̇c

θ

)
+SΠ +Sσ +Sβ = 0, (19)

which is valid for all load types listed in equation (11) and for all the interface conditions specified
with eqs. (18), except for the combination of dead load and slip interface, when SΠ = 0 in equation
(14) and M = 0 in equation (17)1. In the latter case, the following equation governs the problem

∂6u̇c
r

∂θ6
+

(
2 +

ΠR3

B

)
∂4u̇c

r

∂θ4
+

(
1 + 2

ΠR3

B

)
∂2u̇c

r

∂θ2
+

ΠR3

B
u̇c
r +

R5

B

(
b

R

∂2σ̇rr
∂θ2

+
∂2ṗβ

∂θ2
− ∂q̇β

∂θ

)
= 0.

(20)

2.2.2 Complex variable formulation for the disk

In a complex variable formulation, the disk is a simple connected circular region, bounded by
a non-intersecting smooth curve L, so that every point can be represented through the complex
variable z = x1 + ix2, where x1 and x2 are the coordinates of the point and i =

√
−1 is the

imaginary unit. Moreover, denoting with r the distance from the point z to the origin zc = 0 and
with θ the angle (positive when anticlockwise) between x1 and the radius r, in a polar coordinate
system (r, θ) it is z = reiθ. Following [22], the following notation is introduced

g(z) =
R

z
=

R

(x1 + ix2)
, g′(z) = − 1

R
g2(z), g′′(z) =

2

R2
g3(z),

g(z) =
R2

r2
g−1(z), r =

√
x21 + x22.

(21)

where a prime denotes the derivative with respect to z and a superimposed bar the complex
conjugate. By setting r = R in equations (21), the following relations for points τ = Reiθ on the
boundary of the disk can be derived

g(τ) =
R

τ
, g(τ) =

R

τ
= g−1(τ), g′(τ) = − 1

R
g2(τ). (22)

The elastic displacement and stress fields can be determined everywhere in the disk via Kolosov-
Muskhelishvili complex potentials φ(z) and ψ(z) as [23]

2µdud(z) = κdφ(z)− zφ′(z)− ψ(z),

σd
11 + σd

22 = 4 Re (φ′(z)) ,

σd
22 − σd

11 + 2iσd
12 = 2 [zφ′′(z) + ψ′(z)] ,

(23)

where the prime indicates derivation with respect to the variable z while Re and Im denote real
and the imaginary parts, respectively. The components of the incremental Eulerian strain tensor
D are linked to the complex potentials through

Dd
11 +Dd

22 = 2
1− 2νd

µd Re(φ′ (z)) ,

Dd
22 −Dd

11 + 2iDd
12 =

1

µd [zφ′′ (z) + ψ′ (z)] .
(24)
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At every point τ = Reiθ on the boundary of the disk the following complex Fourier represen-
tation for the displacement is introduced

ud
1(τ) + i ud

2(τ) =

∞∑
n=1

A−n g
n(τ) +

∞∑
n=0

An g
−n(τ), (25)

where ud
1(τ) and ud

2(τ) are displacement components and A±n are complex coefficients for the
moment unknown. The radial and tangential components of the displacement are represented as

ud
r (τ) =

1

2

[
ud (τ) g (τ) + ud(τ) g−1(τ)

]
, ud

θ(τ) =
1

2i

[
ud(τ) g(τ)− ud(τ) g−1(τ)

]
. (26)

Eqns. (25) and (26) lead to

2ud
r (τ)

2i ud
θ(τ)

}
=

∞∑
n=1

A−n g
n+1(τ) +

∞∑
n=0

An g
−(n−1)(τ)±

∞∑
n=1

A−n g
−(n+1)(τ)±

∞∑
n=0

An g
n−1(τ). (27)

The complex combination of the stresses acting at a point τ ∈ L of the disk can be introduced

σd
rr(τ) + i σd

rθ(τ) =

∞∑
n=1

B−n g
n(τ) +

∞∑
n=0

Bn g
−n(τ), (28)

where the complex coefficients A±n and B±n are interrelated as [24]

B−1 = 0, B0 =
4µd

(κd − 1)R
Re (A1) ,

B−n =
2µd

R
(n− 1)A1−n, for n ≥ 2, Bn =

2µd

κdR
(n+ 1)An+1, for n ≥ 1.

(29)

The applied external load is represented by the following complex series

qβ(τ) + i pβ(τ) =

∞∑
n=1

D−n g
n(τ) +

∞∑
n=0

Dn g
−n(τ), (30)

where D±n are complex coefficients that are known once the shape of the external load qβ is
prescribed.

For a circular elastic disk, the expressions for the complex potentials φ(z) and ψ(z) appearing
in eqs. (23) assume the form [25]

φ(z) =
2µd

κd − 1
Re (A1) g

−1(z) +
2µd

κd

∞∑
n=1

An+1 g
−(n+1)(z),

ψ(z) = − 2µd

κd − 1
Re (A1)

zc
R

− 2µd

κd

[
zc
R

+ g(z)

] ∞∑
n=1

(n+ 1)An+1 g
−n(z)

− 2µd
∞∑

n=2

A1−n g
−(n−1)(z),

(31)

and hence, the elastic fields on the boundary and within the disk are known once coefficients
A±n are found as functions of the known coefficients D±n. For brevity, only the case of perfect
bonding condition at the interface will be presented in the following, where conditions (18)1−2

are enforced. The other case of slip interface will not be reported, but its derivation follows a
procedure analogous to that developed for perfect bonding.

3 Analytic solution for the disk with prestressed coating

3.1 Complex Fourier series form of the governing equations
The complex counterpart of equation (5)2, representing the inextensibility constraint, can be de-
termined using the series representation for the displacement, eq. (27), from which, collecting the
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terms with the same power of g±n(τ), it follows [21]

Re (A1) = 0, A2 = 0, An+1 =
n− 1

n+ 1
A1−n for n ̸= 0 and n ̸= −1. (32)

From equations (11) and (17)1 for r = R, adopting the Fourier series representation introduced
before, the terms SΠ and Sσ in equation (14)1 become [16]

SΠ(τ) = ξ
ΠR3

2i B

{ ∞∑
n=1

(−n)α
[
A−n g

n+1(τ)−A−n g
−(n+1)(τ)

]
+

∞∑
n=0

nα
[
An g

−(n−1)(τ)−An g
n−1(τ)

]
− (α− ξ)

[
A0 g(τ)−A0 g

−1(τ)
]}

,

Sσ(τ) =
R4b

2i B

{ ∞∑
n=1

(n+ M )
[
B−n g

n(τ)−B−n g
−n(τ)

]
−

∞∑
n=0

(n− M )
[
Bn g

−n(τ)−Bn g
n(τ)

]}
,

(33)
where (i.) ξ = α = 1 for hydrostatic pressure, (ii.) ξ = 1, α = 0 for centrally directed load, and
(iii.) ξ = 0 for dead load. Isolating the real and the imaginary parts in equation (30) yields

2 ṗβ(τ)

2i q̇β(τ)

}
=

∞∑
n=1

D−n g
n(τ) +

∞∑
n=0

Dn g
−n(τ)±

∞∑
n=1

D−n g
−n(τ)±

∞∑
n=0

Dn g
n(τ), (34)

so that expression (96)2, dτ/ds = i g−1(τ) in [24], provides for the term Sβ in eq. (14)1

Sβ(τ) =
R4

B

( ∞∑
n=1

(n− 1)D−n g
n(τ)−

∞∑
n=0

(n+ 1)Dn g
−n(τ)

−
∞∑

n=1

(n− 1)D−n g
−n(τ) +

∞∑
n=0

(n+ 1)Dn g
n(τ)

)
.

(35)

From [16] the following terms appearing in eq. (19) are identified as

∂5u̇r
∂θ5

+ 2
∂3u̇r
∂θ3

+
∂u̇r
∂θ

=
1

2i

{ ∞∑
n=1

n2 (n+ 1) (n+ 2)
2
[
A−n g

n+1 −A−n g
−(n+1)

]
−

∞∑
n=3

n2 (n− 1) (n− 2)
2
[
An g

−(n−1) −An g
n−1
]}

,

∂3u̇r
∂θ3

+ 2
∂u̇r
∂θ

− u̇θ =
1

2i

{ ∞∑
n=1

n
(
n2 − 3n+ 1

) [
An g

−(n−1)(τ)−An g
n−1
]

−
∞∑

n=1

n
(
n2 + 3n+ 1

) [
A−n g

n+1 −A−n g
−(n+1)

]}
,

(36)

so that a substitution of expressions (36), (33) and (35) leads to the following form of equation
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(19)

∞∑
n=1

n2 (n+ 1) (n+ 2)
2
[
A−n g

n+1(τ)−A−n g
−(n+1)(τ)

]
−

∞∑
n=3

n2 (n− 1) (n− 2)
2
[
An g

−(n−1)(τ)−An g
n−1(τ)

]
+

ΠR3

B

{ ∞∑
n=1

n
(
n2 − 3n+ 1

)
[
An g

−(n−1)(τ)−An g
n−1(τ)

]
−

∞∑
n=1

n
(
n2 + 3n+ 1

) [
A−n g

n+1(τ)−A−n g
−(n+1)(τ)

]}

+
bR4

B

{ ∞∑
n=1

(n+ M )
[
B−n g

n(τ)−B−n g
−n(τ)

]
−

∞∑
n=0

(n− M )
[
Bn g

−n(τ)−Bn g
n(τ)

]}

+
R4

B

[ ∞∑
n=1

(n− 1)D−n g
n(τ)−

∞∑
n=0

(n+ 1)Dn g
−n(τ)−

∞∑
n=1

(n− 1)D−n g
−n(τ)

+

∞∑
n=0

(n+ 1)Dn g
n(τ)

]
+SΠ = 0. (37)

Using eqs. (29) and collecting terms with the same power in g±n(τ) in equation (37), the following
cases can be distinguished:

• For n = 0 and n = 1

(ξ − 1)Π Im(A1)−R Im(D0) = 0, Π ξ(α− ξ)A0 + 2RD1 = 0, (38)

• For n ≥ 2

A1−n = − R4κd
[
(n− 1)D−n + (n+ 1)Dn

]
2(n− 1) [Bκdn2(n2 − 1)−ΠR3κd (n2 − 1−Υ(n, α, ξ)) + bµdR3Ψ(n,M )]

, (39)

where

Υ(n, α, ξ) =
ξ

2

[
(−1)α(n− 1)α−1 − (n+ 1)α−1

]
, Ψ(n,M ) = (n+ M )κd + n− M . (40)

The denominator in eq. (39), for a radial compressive load, Π > 0, may vanish and the corre-
sponding elastic fields become singular. In particular, for a given set of material and geometric
parameters (Ec, Ed, κd, R, b, J) a limit value Πcr exists for which the incremental solution for the
disk/coating system bifurcates. After this limit value is exceeded, any solution for the coated disk
is unstable and thus not anymore valid. The value of the dimensionless bifurcation radial load, as
a function of the wave number n, was found in [16] as

Π(n)R3

B
=
n2
(
n2 − 1

)
+
µdbR3

κdB
Ψ(n,M )

(n2 − 1)−Υ(n, α, ξ)
, n ≥ 2, (41)

from which the critical value for the radial load Πcr corresponds to the integer number n minimizing
Π(n).
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3.2 Elastic fields within the prestressed coated disk and internal forces
in the coating

Using eqs. (32) and (39) for the coefficients A±n, the complex potentials and their derivatives
involved in equations (31) assume the form

φ(z) = µdR4
∞∑

n=2

1

Γ(n+ 1)

[
(n− 1)D−n + (n+ 1)Dn

]
g−(n+1)(z),

φ′(z) = µdR3
∞∑

n=2

1

Γ

[
(n− 1)D−n + (n+ 1)Dn

]
g−n(z),

φ′′(z) = µdR2
∞∑

n=2

1

Γ
n
[
(n− 1)D−n + (n+ 1)Dn

]
g−(n−1)(z),

ψ(z) = −µdR4
∞∑

n=2

1

Γ(n− 1)

[
(n− 1)D−n + (n+ 1)Dn

]
(n− 1 + κd) g−(n−1)(z),

ψ′(z) = −µdR3
∞∑

n=2

1

Γ

[
(n− 1)D−n + (n+ 1)Dn

]
(n− 1 + κd) g−(n−2)(z),

(42)

where
Γ = Bκdn2(n2 − 1)−ΠR3κd(n2 − 1−Υ(n, α, ξ)) + bµdR3Ψ(n,M ). (43)

The elastic fields at every point z within the disk can be evaluated by substituting eqs. (42)
into the Kolosov-Muskhelishvili formulae (23). This leads to

ud(z) =
R4

2

∞∑
n=2

1

Γ

{
−κ

d
[
(n− 1)D−n + (n+ 1)Dn

]
g−(n+1)(z)

(n+ 1)

+

[
(n− 1)D−n + (n+ 1)Dn

] [
r2(n− 1)−R2(n− 1 + κd)

]
R−2n gn−1(z)

(n− 1)r−(2n−2)

}
,

σd
11(z) + σd

22(z)

4µR3
= Re

[
1

Γ

[
(n− 1)D−n + (n+ 1)Dn

]
g−n(z)

]
,

σd
11(z)− σd

22(z) + iσd
12(z)

2µR3
= −

∞∑
n=2

1

Γ

[
(n− 1)D−n + (n+ 1)Dn

] [
r2n−R2(n− 1 + κd)

]
g−(n−2)(z).

(44)
Internal forces in the prestressed coating loaded by the incremental applied load can be evalu-

ated using equations (3.14) derived and reported in reference [16], which are

Ṁ = −B
(
∂2u̇r
∂s2

+
u̇r
R2

)
,

Ṫ = −B
(

1

R2

∂u̇r
∂s

+
∂3u̇r
∂s3

)
−ΠR

(
∂u̇r
∂s

− u̇θ
R

)
,

Ṅ = −R
[
B

(
∂4u̇r
∂s4

+
1

R2

∂2u̇r
∂s2

)
+ΠR

(
∂2u̇r
∂s2

+
u̇r
R2

)
+ ṗβ + bσ̇rr

]
.

(45)

4 A case study: the coated disk subject to two opposite force
distributions

4.1 Model for the applied external load
Following [21], the theoretical framework developed in the preview sections is now particularized
to the case of a coated disk loaded by two opposite self-equilibrated force distributions ṗβ , of
incremental nature, applied along an arc length s = γR, where γ is the angle centred along the
upper and lower part of the vertical diameter of the disk (see the inset in Fig. 4). From expression
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(8)1, assuming q̇β = 0, the value of the complex coefficients D±n involved in the complex Fourier
representation of the applied incremental load, equation (30), can be generated using the equation
(68) derived and reported in [21], which now becomes∫ π+γ

2

π−γ
2

ṗβe−miθ dθ+

∫ 3π+γ
2

3π−γ
2

ṗβe−miθ dθ =

∫ 2π

0

[ ∞∑
n=1

D−n e
−(n+m) iθ +

∞∑
n=0

Dn e
−(n−m) iθ

]
dθ. (46)

For a fixed integer m in equation (46) one non-vanishing coefficient is generated and its value can
be computed by inverting the same equation, which gives

Dm =
1

2π

{∫ π+γ
2

π−γ
2

ṗβe−miθ dθ +

∫ 3π+γ
2

3π−γ
2

ṗβe−miθ dθ

}
. (47)

In the case that the applied incremental loading ṗβ is constant, the above equation reduces to the
explicit form

Dm = i
ṗβ

2mπ

(
1 + eimπ

) (
1− eimγ

)
e−im

2 (3π+γ), m ̸= 0,

D0 = ṗβ
γ

π
.

(48)

4.2 Fixing the rigid body roto-translations
Once the coefficients D±n are generated, the value of the complex coefficients A±n can be derived
from eq. (39). However, the coefficient A0 and the imaginary part of A1 remain unknown as they
rule rigid body roto-translations, so that their expressions can be computed, following the same
procedure adopted and described in [25].

When the prestress in the coating is generated by a radial loading of the ‘central direction’
type (ξ = 1, α = 0), a rigid rotation is a solution, while rigid translations are not. For dead radial
load (ξ = 0), rigid translations are solutions, but not rigid rotations, [26]. Finally, for hydrostatic
pressure (ξ = α = 1) rigid rotations and translations are always solutions. In these three cases
of different applied radial loads, from equations (38), requirements about the values of A0 and
Im(A1) are found and reported in Table 1.

Hydrostatic pressure Centrally directed Dead
ξ = α = 1 ξ = 1, α = 0 ξ = 0

A0 unrestricted − 2R
Π D1 unrestricted

Im(A1) unrestricted unrestricted −R Im(D0)

Table 1: Coefficients A0 and Im(A1) determined to exclude rigid body roto-translations of the coated disk under
applied load.

When coefficients A0 and/or Im(A1) are unrestricted, their expressions are obtained by impos-
ing displacements as derived and reported in [21], so obtaining A0 = 0 and the following expression
for the imaginary part of A1

Im(A1) = −2 Im

(
1

n+ 1
A1−n

)
. (49)

4.3 Results for the coated disk at different levels of prestress, subject
to opposite force distributions

All the three different types of radial loads considered in the present article, equation (10), are
investigated, to generate in the coating the same level of prestress (in the figures these are labelled
as ‘Hydrostatic’, ‘Centrally-directed’, and ‘Dead’). The prestress is assumed to be a fraction of the
critical load for bifurcation Πcr, equation (41).

In particular, four values of prestress are analysed:
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(i.) null, Π = 0;

(ii.) low, Π/Πcr = 0.1;

(iii.) medium, Π/Πcr = 0.5;

(iv.) close to the critical load of the disk/coating system, Π/Πcr = 0.8.

Upon the application of any of the radial loads, the inner disk remains unloaded, so that the
response of the coating/disk system is perturbed by applying an additional incremental load ṗβ

uniformly distributed on a small arc, assumed of 4◦ and approximated using the first 100 terms in
the series representation, eq. (48).

The incremental solution can be expressed in a dimensionless form as

u

R
and

σ

µd ,

so that these quantities depend upon 3 nondimensional parameters

B

µdbR3
,

Π

µdb
, and κd.

The examples below are limited for brevity to the case of perfect bonding between coating
and disk and the Kolosov constant is fixed as κd = 2. Moreover, rather than express the results
as functions of the remaining two of the above parameters, it was decided to introduce the more
intuitive ratio between Young’s moduli of the disk and coating, Ed/Ec, and to assume 2(1 +
νd)J/(bR3) = 0.001. The results are reported in Figs. 2–3.
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Figure 2: Incrementally deformed shape of the coating for two values of the ratio Ed/Ec = {0.15, 0.25}, upon
application of the incremental load ṗβ = {µdb/(150γ), µdb/(250γ)}, respectively, in the presence of a prestress of
different intensity, Π/Πcr (0.1 green, 0.5 blue and 0.8 red line). Different types of radial loads are considered to
produce the same prestress: hydrostatic pressure, centrally directed and dead load. The brown line refers to the
case of the coated disk without prestress.

The external deformed shape of the coated disk is reported in Figs. 2 and 3, for different values
of prestress in the former case, at fixed prestress Π/Πcr = 0.8 in the latter, where the deformed
inner circles are also reported (the colour is proportional to the intensity of the field). In both
cases two values of the ratio Ed/Ec are considered, namely Ed/Ec equal 0.15 and 0.25.

Both figures show that the compressive prestress decreases the stiffness of the system, which
tends to vanish when the prestress in the coating approaches the bifurcation Π/Πcr = 1. The
reported examples are all compared for the same fraction of prestress compared to the critical
value, so that the differences are due to the particular type of radial load. The latter strongly
affects the incremental deformation and the shape of the incrementally deformed solid.
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Figure 3: Incrementally deformed shape of the coating for two values of the ratio Ed/Ec = {0.15, 0.25}, upon
application of the incremental load ṗβ = {µdb/(150γ), µdb/(250γ)}, respectively, in the presence of a prestress
Π/Πcr = 0.8. Different types of radial loads are considered to produce the same prestress: hydrostatic pressure,
centrally directed and dead load. Level sets of the displacements are reported internally to the disk.
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Figure 4: Incremental displacement (divided by R and positive when towards the centre of the disk) of the point on
the coating located under the resultant F of the incremental load ṗβ (distributed on an arch γ = 4◦) as a function
of the prestress Π/Πcr, ranging from tensile (negative values) to compressive (positive values). The differently
coloured curves refer to different types of radial loads, all providing the same prestress ratio Π/Πcr in the coating.
The asymptote of the curves denotes the critical load for bifurcation.

The incremental displacement at the centre of the coating (under the resultant F of the applied
incremental load) is reported in Fig. 4 as a function of the prestress Π/Πcr, including also the tensile
case (negative values of Π). Results are given for Ed/Ec = {0.15, 0.25}.

The figure shows that the first bifurcation load is obtained in a perturbative way, so that the
critical load corresponds to the asymptote of the graphs. In particular, the critical bifurcation
occurs at n = 5 for Ed/Ec = 0.15 and n = 6 for Ed/Ec = 0.25. The situation is detailed in Fig. 5,
referred only to the case of hydrostatic pressure load. Here, at the increase of the prestress, the
first bifurcation load is approached for both values of Ed/Ec, but for Ed/Ec = 0.25 the deformed
mode approaches the bifurcation mode n = 6, while in the other case the bifurcation mode is
not correctly approached and the deformation remains symmetric, although n = 5. However, in
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the latter case, when the bifurcation prestress is surpassed, the stiffness of the system becomes
negative, thus showing that the critical load has been exceeded.

Π/Πcr = 0 Π/Πcr = 0.1 Π/Πcr = 0.6 Π/Πcr = 0.9 Π/Πcr = 0.98 Π/Πcr = 0.998

Ed/Ec = 0.15

Π/Πcr = 0 Π/Πcr = 0.1 Π/Πcr = 0.6 Π/Πcr = 0.9 Π/Πcr = 0.98 Π/Πcr = 0.987

Ed/Ec = 0.25

Figure 5: Incrementally deformed configurations of the coated disk for different ratios of Π/Πcr (from null prestress
on the left to near-buckling pre-stress on the right) and for Ed/Ec = 0.15 (upper part) and Ed/Ec = 0.25 (lower
part). The cases reported correspond to a pre-stress in the coating generated by hydrostatic pressure and the blue
(red) colour highlights compressive (tensile) incremental tractions in the coating. Note that in the lower part, the
bifurcation mode n = 6 is approached, while in the upper part, the deformation remains symmetric even if the
bifurcation mode is odd, n = 5.

The level sets of the dimensionless von Mises stress inside the disk generated by the application
of the incremental load are depicted in Fig. 6, for Ed/Ec = 0.25 and two values of prestress
(compressive Π/Πcr = 0.5 and tensile Π/Πcr = −0.5). In the figure identical colours correspond to
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Figure 6: Level sets for dimensionless von Mises stress inside a coated disk, induced by the application of the
incremental load ṗβ , superimposed to a radial load producing the prestress in the coating. The prestress (compressive
on the left and tensile on the right) in the coating is induced by different radial loadings. Results are compared to
the case of the coated disk without prestressed for Ed/Ec = 0.25. Note that the coating shields the stress inside
the disk particularly when the prestress is tensile.

the same level of von Mises stress in all quadrants and for both figures on the right and the left.
Results highlight the fact that a coating subject to tensile prestress produces a shield to the inner
core, which is less stressed than in the case in which the prestress is absent.
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5 Conclusions
States of prestress or residual stress in solids can originate from different sources, such as thermal
mismatch, shrink-fit operations, but also external pre-loads, namely, loads already acting before
any further increment of load is superimposed. The mentioned sources play an important role
in the incremental behaviour of a solid, as shown in the present article through the investigation
of the response of an elastic disk with prestressed coating, the latter modelled through an elastic
circular (unshearable and inextensible) rod. Based on the main assumptions that the prestress
state is negligible in the disk but affects the coating and that the latter is axially inextensible,
an incremental solution, found analytically via complex potentials, has been proposed when the
prestressed coated disk is subjected to an arbitrary incremental load distribution. The presented
results show the importance of several effects related to: (i.) the type of radial load acting to
generate the prestress before the incremental load is applied; (ii.) the interfacial conditions between
coating and bulk solid; (iii.) the stiffening or weakening induced by prestress; (iv.) the possibility
of approaching bifurcation loads and modes through a perturbative technique.

The use of stiff coatings is common in several man-made and natural systems, where interfacial
conditions, type of loading, and state of prestress play an important role. The presented results
may find applications in biomechanics and in the field of deformable solids used for mechanical
actuation or load bearing.

15



Acknowledgements
The work has been developed in the framework of a NSF-ERC visit of S.M. (based in the United
States) to the ERC project 101052956-Beyond, managed by D.B.. D.B. and M.G. gratefully ac-
knowledge funding from the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme, Grant Agreement No. ERC-ADG-2021-101052956-
BEYOND. A.P. gratefully acknowledges funding from the European Union (ERC CoG 2022,
SFOAM, 101086644). S.M. gratefully acknowledges the support from the National Science Foun-
dation, United States, award number NSF CMMI-2112894.

References
[1] H. M. Jensen, J. W. Hutchinson, and K. Kyung-Suk. “Decohesion of a cut prestressed film

on a substrate”. In: International Journal of Solids and Structures 26.9-10 (1990), pp. 1099–
1114.

[2] I. Noyan and J. Cohen. “Residual stresses in materials”. In: American Scientist 79.2 (1991),
pp. 142–153.

[3] J. Beuth Jr. “Cracking of thin bonded films in residual tension”. In: International Journal of
Solids and Structures 29.13 (1992), pp. 1657–1675.

[4] O. Jørgensen, A. Horsewell, B. F. Sørensen, and P. Leisner. “The cracking and spalling of
multilayered chromium coatings”. In: Acta metallurgica et materialia 43.11 (1995), pp. 3991–
4000.

[5] S.-g. Chen, H.-j. Gao, Q. Wu, Z.-h. Gao, X. Zhou, et al. “Review on residual stresses in metal
additive manufacturing: formation mechanisms, parameter dependencies, prediction and con-
trol approaches”. In: Journal of Materials Research and Technology 17 (2022), pp. 2950–2974.

[6] J. D. Humphrey. “Continuum biomechanics of soft biological tissues”. In: Proceedings of
the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
459.2029 (2003), pp. 3–46.

[7] G. A. Holzapfel and R. W. Ogden. “Constitutive modelling of arteries”. In: Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences 466.2118 (2010),
pp. 1551–1597.

[8] A. Hoger. “On the residual stress possible in an elastic body with material symmetry”. In:
Archive for Rational Mechanics and Analysis 88 (1985), pp. 271–289.

[9] A. Hoger. “On the determination of residual stress in an elastic body”. In: Journal of Elasticity
16.3 (1986), pp. 303–324.

[10] A. E. Armenakas and G. Herrmann. “Vibrations of infinitely long cylindrical shells under
initial stress”. In: AIAA journal 1.1 (1963), pp. 100–106.

[11] R. W. Ogden and D. J. Steigmann. “Plane strain dynamics of elastic solids with intrinsic
boundary elasticity, with application to surface wave propagation”. In: Journal of the Me-
chanics and Physics of Solids 50 (2002), pp. 1869–1896.

[12] C.-S. Man and W. Lu. “Towards an acoustoelastic theory for measurement of residual stress”.
In: Journal of elasticity 17.2 (1987), pp. 159–182.

[13] M. Gei. “Elastic waves guided by a material interface”. In: European Journal of Mechanics
27 (2008), pp. 328–345.

[14] M. Shams, M. Destrade, and R. W. Ogden. “Initial stresses in elastic solids: constitutive laws
and acoustoelasticity”. In: Wave Motion 48.7 (2011), pp. 552–567.

[15] J. Merodio, R. W. Ogden, and J. Rodríguez. “The influence of residual stress on finite de-
formation elastic response”. In: International Journal of Non-Linear Mechanics 56 (2013),
pp. 43–49.

16



[16] M. Gaibotti, S. Mogilevskaya, A. Piccolroaz, and D. Bigoni. “Bifurcations of an elastic disc
coated with an elastic inextensible rod”. In: Proceedings of the Royal Society A 480.2281
(2024), p. 20230491.

[17] D. Bigoni, M. Gei, and A. Movchan. “Dynamics of a prestressed stiff layer on an elastic half
space: filtering and band gap characteristics of periodic structural models derived from long-
wave asymptotics”. In: Journal of the Mechanics and Physics of Solids 56.7 (2008), pp. 2494–
2520.

[18] Z. Cai and Y. Fu. “Exact and asymptotic stability analyses of a coated elastic half-space”.
In: International journal of solids and structures 37.22 (2000), pp. 3101–3119.

[19] M. Gei and R. Ogden. “Vibration of a surface-coated elastic block subject to bending”. In:
Mathematics and Mechanics of Solids 7.6 (2002), pp. 607–628.

[20] R. Ogden, D. Steigmann, and D. Haughton. “The effect of elastic surface coating on the finite
deformation and bifurcation of a pressurized circular annulus”. In: Journal of elasticity 47
(1997), pp. 121–145.

[21] M. Gaibotti, D. Bigoni, and S. G. Mogilevskaya. “Elastic disk with isoperimetric Cosserat
coating”. In: European Journal of Mechanics - A/Solids (2022), p. 104568. doi: https:
//doi.org/10.1016/j.euromechsol.2022.104568.

[22] S. G. Mogilevskaya, A. Y. Zemlyanova, and M. Zammarchi. “On the elastic far-field response
of a two-dimensional coated circular inhomogeneity: Analysis and applications”. In: Interna-
tional Journal of Solids and Structures 130 (2018), pp. 199–210.

[23] N. Muskhelishvili. Some basic problems of the mathematical theory of elasticity. Springer
Science & Business Media, 1959.

[24] A. Zemlyanova and S. Mogilevskaya. “Circular inhomogeneity with Steigmann–Ogden inter-
face: Local fields, neutrality, and Maxwell’s type approximation formula”. In: International
Journal of Solids and Structures 135 (2018), pp. 85–98.

[25] S. G. Mogilevskaya, S. L. Crouch, and H. K. Stolarski. “Multiple interacting circular nano-
inhomogeneities with surface/interface effects”. In: Journal of the Mechanics and Physics of
Solids 56.6 (2008), pp. 2298–2327.

[26] J. Singer and C. Babcock. “On the buckling of rings under constant directional and centrally
directed pressure”. In: Journal of Applied Mechanics (1970).

17

https://doi.org/https://doi.org/10.1016/j.euromechsol.2022.104568
https://doi.org/https://doi.org/10.1016/j.euromechsol.2022.104568

	Introduction
	The coating and the disk
	Statics and kinematics of a circular rod
	Incremental equilibrium of the coating for three different radial loads

	The disk coated with the prestressed rod
	Incremental applied load on the disk/coating system
	Complex variable formulation for the disk


	Analytic solution for the disk with prestressed coating
	Complex Fourier series form of the governing equations
	Elastic fields within the prestressed coated disk and internal forces in the coating

	A case study: the coated disk subject to two opposite force distributions
	Model for the applied external load
	Fixing the rigid body roto-translations
	Results for the coated disk at different levels of prestress, subject to opposite force distributions

	Conclusions

