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Necking of thin-walled cylinders via bifurcation of
incompressible nonlinear elastic solids†

Roberta Springhetti, Gabriel Rossetto and Davide Bigoni *

Necking localization under quasi-static uniaxial tension is experimentally observed in ductile thin-walled

cylindrical tubes, made of soft polypropylene. Necking nucleates at multiple locations along the tube

and spreads throughout, involving the occurrence of higher-order modes, evidencing trefoil and fourth-

foiled (but rarely even fifth-foiled) shaped cross-sections. No evidence of such a complicated necking

occurrence and growth was found in other ductile materials for thin-walled cylinders under quasi-static

loading. With the aim of modelling this phenomenon, as well as all other possible bifurcations, a two-

dimensional formulation is introduced, in which only the mean surface of the tube is considered,

paralleling the celebrated Flügge ’s treatment of axially-compressed cylindrical shells. This treatment is

extended to include tension and a broad class of nonlinear-hyperelastic constitutive law for the material,

which is also assumed to be incompressible. The theoretical framework leads to a number of new

results, not only for tensile axial force (where necking is modelled and, as a particular case, the classic

Considère formula is shown to represent the limit of very thin tubes), but also for compressive force,

providing closed-form formulae for wrinkling (showing that a direct application of the Flügge equation

can be incorrect) and for Euler buckling. It is shown that the J2-deformation theory of plasticity

(the simplest constitutive assumption to mimic through nonlinear elasticity the plastic branch of a

material) captures multiple necking and occurrence of higher-order modes, so that experiments are

explained. The presented results are important for several applications, ranging from aerospace and

automotive engineering to the vascular mechanobiology, where a thin-walled tube (for instance an

artery, or a catheter, or a stent) may become unstable not only in compression, but also in tension.

1 Introduction

Necking instability occurring in the course of a tensile test of a
solid bar of circular cross-section was initially discovered in
ductile metals and later detected in other materials, including
nylon1 and polymers.2 Necking is a thoroughly analyzed problem;
more than a century ago Armand Considère3 related its initiation
to the criterion of maximum load, which was later demonstrated
to provide a lower bound (approached in the limit of infinitely
slender specimens) to the critical load for bifurcation according to
an axially-symmetric mode.4–8 The development of neck curvature
is accompanied by a strong alteration in the stress state, leading
to triaxiality, as predicted by Bridgman.9 Research on necking has
developed along different lines, including the consideration of
size effects through gradient models10 and dynamic conditions.11

Recently, models for the post-critical behaviour allowed a deep
understanding of the phenomenon.12,13

The present article originates from the experimental result
shown in Fig. 1 and 2, reporting on a tensile test performed (in
the ‘Instabilities Lab’ of the University of Trento, further details
are deferred to Appendix A) on thin-walled tubes (generally
used as drinking straws) made of polypropylene (detected
through Fourier-transform infrared spectroscopy).

The material, characterized by an elastoplastic behaviour, is
capable of sustaining axial stretches up to 6 without failure. The
photo sequence shows that an initial necking localization
occurs (in a random position along the tube) just after the
peak is attained in the nominal stress/conventional strain
curve, while multiple local necking phenomena progressively
develop (without showing periodic or regular features) under
increasing deformation of the tube, as shown in Fig. 3. Thin-
ning of the cross-section, Fig. 5b, occurs while maintaining the
plastic deformation incompressible, and it spreads along the
specimen until the entire length is invaded, at which point the
nominal stress starts to rise again. Interestingly, throughout
this diffusive phase, when two consecutive necks localize at
nearby positions, superior instability modes are observed to
develop at increasing deformation in the intermediate region,
as evident in Fig. 4 and 5c, with the cross-section assuming a
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trefoil shape, a fourth-foiled shape and, rarely, fifth-foiled
shape. Multiple necking is common before dynamic fragmen-
tation (a topic with a vast literature14,15), but rather unusual for
quasi-static uniaxial tension. Moreover, necking for hollow rods

was not reported so far (only a modest evidence of this
phenomenon was found by us in moderately-thin metallic
tubes, Fig. 12 in Appendix A) and, in particular, the fact that
the tube is thin-walled represents a surprising circumstance
from the mechanical point of view. In these conditions indeed,
the stress triaxiality effect following necking in a solid bar is
excluded, because plane stress continues to prevail even after
neck formation.

In response to the experimental evidence reported, an
approach to bifurcation is introduced in the present article
for a thin-walled cylinder, characterized by a constitutive equa-
tion belonging to a broad class of incompressible nonlinear
elastic materials, including neo–Hookean and Mooney–Rivlin,
and also the J2-deformation theory of plasticity,16,17 that imi-
tates the loading behaviour of the analyzed tubes. In particular,
for neo–Hookean, Mooney–Rivlin materials and also Ogden
and Gent models, tensile bifurcations are ruled out, so that
the results for these materials are included here only for
reference when the axial force is compressive. On the other
hand, the J2-deformation theory of plasticity represents the
simplest approach to tensile bifurcations and is shown to
capture the observed necking patterns of the thin-walled tube.
The latter constitutive equation mimics the in-loading branch
of a plastic solid and allows the eventuality of tensile bifurca-
tions. Remarkably, while the behaviour of cylindrical shells
under compression and for compressible materials is a famous
topic in mechanics,18–20 the model of Flügge21 does not allow

Fig. 1 Nominal stress vs. conventional strain obtained from a tensile test on a polypropylene (PP) thin-walled tube (6.5 mm initial diameter, 0.18 mm
thickness, 205 mm length). During the test, the sample was brought up to a conventional strain of 4.5 at which the test was terminated before failure. The
final thickness of the tube wall was 0.06 mm. Initiation and progression of necking is documented in Fig. 2.

Fig. 2 Nucleation and development of multiple necks in polypropylene
(PP) thin-walled tubes pulled in tension, detail of Fig. 1.
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tensile instabilities and was never extended neither to tension
nor to incompressibility, which is the purpose of the present
article. In particular, our theoretical approach retains the
thinness of the tube wall through a condensation of the

governing equations on the mean surface of the cylinder, thus
defining a two-dimensional cylindrical shell. The developed
theory allows analyzing the full spectrum of tensile and com-
pressive bifurcations in cylindrical shells made of a non-linear
elastic and incompressible material, never addressed so far.
Our results, generalizing the Flügge outcomes in several ways,
include the derivation of new closed-form solutions for wrink-
ling, for Euler buckling, and for necking. Under tension, it is
analytically shown that the axial stretch for necking reduces to
the famous Considère formula in the limit of very thin tubes.
More in general, the modeling based on J2-deformation theory
of plasticity is shown not only to capture necking formation but
also to explain the multiplicity of necks and the occurrence of
higher-order modes. The presented results are important in a
myriad of problems involving thin-walled tubes. These are well-
known in civil, mechanical, and aerospace engineering, but are
also of interest in the biomechanics of blood and urinary
vessels, for the insertion and behaviour of stents and catheters.
In all these examples, tubes are used in both compression and
tension, and their instability represents a problem with serious
consequences.

2 The pre-stress state and the
incremental stress

A thin-walled, cylindrical shell of circular cross-section is con-
sidered, whose undeformed stress-free configuration is usefully
described by means of cylindrical coordinates (r0, y0, z0), where
the z0-axis coincides with the axis of revolution of the shell. In
undeformed configuration, the shell is characterized by length L,
and by inner and outer radii Ri and Re, respectively, so that a0 =
(Ri + Re)/2 denotes the initial mid-radius, while t0 = Re � Ri

represents the initial thickness. The fundamental path traversed
by the structure prior to bifurcation is assumed to be a homo-
geneous, axisymmetric compression or tension in the longitu-
dinal direction z, generated by a uniaxial Cauchy stress T = TzzG,
with G = ez#ez (ez denotes the unit vector aligned with the
z-axis), therefore, in the current configuration

r = lrr0, y = y0, z = lzz0.

Fig. 3 Detail of necking development (on the left) and of the progressive formation of multiple necking in polypropylene (PP) thin-walled tubes subject
to tension.

Fig. 4 Evidence of higher-order bifurcation modes in the necking of
polypropylene (PP) thin-walled tubes under tension. Both trefoil and
fourth-foiled modes have usually been observed, while, rarely, a fifth-
foiled mode has also been found.

Fig. 5 Cross-sections of PP tubes under tension, showing: (a) the unde-
formed cross-section; (b) necking with uniform thinning; (c) necking
involving a higher-order trefoil mode.
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Tensor F = diag{lr, ly, lz} denotes the deformation gradient,
whose determinant J = det F = 1 for an incompressible material,
corresponding to lr ly lz = 1. Maintaining the assumption of
incompressibility and enforcing axial symmetry, lr = ly, the
following relation is obtained

lr ¼ ly ¼ l�1=2z :

A standard notation is used, with bold capital and lower case
letters denoting tensors and vectors, respectively, and with
capital or lower case letters indicating operators referred to
material or spatial configurations, respectively. For incompres-
sible materials, the Kirchhoff stress K = JT (coincident with the
Cauchy stress T, as J = 1) can be written in the following form as
a function of parameters a1 and a�1 depending on the consti-
tutive law adopted:

K = �pI + a1B + a�1B�1. (2.1)

Here B = FFT = diag{lr
2, ly

2, lz
2} = diag{lz

�1, lz
�1, lz

2} is the left
Cauchy-Green deformation tensor and p is an arbitrary
Lagrange multiplier, to be eliminated through the plane stress
assumption in the pre-bifurcation stress, Krr = 0 (note that for
the initial pre-stress adopted, Krr = Kyy = 0). Two incompressible
materials are considered hereafter:22

�Mooney–Rivlin material, characterized by the strain energy
function

WMR ¼ m1
2

lr2 þ ly2 þ lz2 � 3
� �
� m2

2
lr�2 þ ly�2 þ lz�2 � 3
� �

; (2.2)

with the constants m1 4 0 and m2 r 0 (m2 = 0 for the neo–
Hookean material), such that m = m1 � m2 represents the shear
modulus in the unloaded state. The relevant Cauchy stress
parameters read as

a1 = m1, a�1 = m2; (2.3)

� J2-deformation theory of plasticity material,16,17 defined by
the strain energy function

WJ2 ¼ K

N þ 1
ENþ1e ; (2.4)

with the constitutive stiffness parameter K 4 0 and the hard-
ening exponent 0 o N r 1, while the effective strain

Ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ln lrð Þ2þ ln lyð Þ2þ ln lzð Þ2

h ir
(2.5)

turns out to be Ee ¼ j log lzj in the present context. The corres-
ponding Cauchy stress parameters

a1 ¼
KEN�1e lz 1þ lz3 3 log lz � 1ð Þ

� �
3 l3z � 1
� �2 ;

a�1 ¼
KEN�1e lz2 1� lz3 þ 3 log lz

� �
3 lz3 � 1ð Þ2

(2.6)

depend on both the constitutive constants K and N, as well as
on the axial stretch lz.

The plane stress condition, requiring that the radial normal
stress vanishes, Krr = 0, allows the expression of the pre-stress
components respectively to be

TMR
zz ¼

lz3 � 1

lz2
m1lz � m2ð Þ; TJ2

zz ¼ K log lzj jN�1log lz: (2.7)

The Oldroyd increment23 of the Kirchhoff stress (and thus of
the Cauchy stress in the case of incompressible materials),
defined as

K
�
¼ _pIþH½D�

with the Lagrange multiplier :p, can be written as

K
�
¼ _pIþ 2p Dþ da1

dlz
Bþ da�1

dlz
B�1

� �
Dzzlz

� 2a�1 B�1DþDB�1
� �

:

(2.8)

Multipliers p and :
p are eliminated by imposing Krr ¼ K

�
rr ¼ 0.

The incremental stress can be further simplified on the
basis of the incremental incompressibility condition, prescrib-
ing tr L = 0, namely,

Drr = �(Dyy + Dzz). (2.9)

The component Drr can therefore be replaced using condition
(2.9) in the expression of the incremental stress K

�
; the final set

of incremental equations for the two constitutive laws consid-
ered here are obtained by inserting eqn (2.3) and (2.6), respec-
tively, into the following expressions:

K
�
yy ¼ 2lz�1 a1 � a�1lz2

� �
2Dyy þDzzð Þ;

K
�
zz ¼ lz�2 lz lz3 � 1

� � da1
dlz

lz �
da�1
dlz

� �
Dzz

	

þ 2a1lz Dyy þ 2Dzzð Þ � 2a�1 Dyylz3 þ 2Dzz

� �

;

K
�
ry ¼ 2lz�1 a1 � a�1lz2

� �
Dry;

K
�
rz ¼ 2lz�2 a1lz � a�1ð ÞDrz;

K
�
yz ¼ 2lz�2 a1lz � a�1ð ÞDyz:

(2.10)

3 Incremental deformations of an
axially pre-stressed shell

The current configuration of the cylindrical shell is character-
ized by its length l, external and internal radii re and ri,
respectively, and thus thickness t = re � ri, mid-radius a =
(re + ri)/2, the latter defining the mid-surface, as well as the so-
called ‘reduced radius’, %r = r � a, so that �t/2 r %r r t/2. The
incremental kinematics of the thin-walled cylindrical shell is
assumed in the form24

v(�r, y, z) = v�(y, z) + �r [n�(y, z) � er], (3.1)
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where v�(y, z) denotes the incremental displacement of the
points along the current mid-surface of the shell, whose unit
normal is

n� E er + (�vy � �vr,y)/a ey � �vr,z ez. (3.2)

The incremental displacements can therefore be detailed
componentwise as

vrð�r; y; zÞ ¼ �vrðy; zÞ;

vyð�r; y; zÞ ¼ �vyðy; zÞ þ �vy � �vr;y
� �

�r=a;

vzð�r; y; zÞ ¼ �vzðy; zÞ � �vr;z�r:

8>>><
>>>:

(3.3)

On the basis of the linearized kinematics in eqn (3.3), the
components of gradient of incremental displacement L = grad
v are

Lrr ¼ 0;
Lyy ¼ �vr � �r=að Þ�vr;yy þ 1þ �r=að Þ�vy;y

� ��
ðaþ �rÞ;

Lzz ¼ ��r�vr;zz þ �vz;z;
Lyr ¼ ��vr;y þ �vy

� ��
a; Lzr ¼ ��vr;z;

Lry ¼ �vr;y � �vy
� ��

a; Lzy ¼ ��r�vr;yz þ �vz;y
� ��

ðaþ �rÞ
Lrz ¼ �vr;z; Lyz ¼ � �r=að Þ�vr;yz þ 1þ �r=að Þ�vy;z;

(3.4)

so that the non-trivial components of the Eulerian incremental
strain tensor D = (L + LT)/2 turn out to be

Dyy ¼ �vr � ð�r=aÞ�vr;yy þ ð1þ �r=aÞ�vy;y
� ��

ðaþ �rÞ;

Dzz ¼ ��r�vr;zz þ �vz;z;

Dyz ¼ �ð�r=aÞð2þ �r=aÞ�vr;yz þ ð1þ �r=aÞ2�vy;z
�
þ�vz;y=a

��
2ð1þ �r=aÞ½ �:

(3.5)

When substituted into eqn (2.10), eqn (3.5) allow expressing the
incremental stress K

�
for both the constitutive laws considered

here as functions of the constitutive parameters through eqn (2.3)
and (2.6), respectively, the axial pre-stretch lz, and the compo-
nents of the velocity along the mid-surface of the shell.

4 Generalized incremental stresses
and equilibrium conditions

The incremental equilibrium of the pre-stressed shell within a
relative Lagrangean description, with the current configuration
assumed as reference (so that F = I), reads

div
:
S = 0, (4.1)

where the body forces are neglected. The increment of the first
Piola–Kirchhoff stress tensor S, denoted by

:
S, has additionally

to satisfy the traction-free surface boundary conditions on the
lateral surface of the shell,

:
Sir = 0 as %r = �t/2 (i = r, y, z). (4.2)

In a relative Lagrangean description, the Oldroyd increment of
the Kirchhoff stress is related to

:
S as

K
�
¼ _S� LK; (4.3)

while the traction-free incremental boundary conditions,
eqn (4.2), can be re-expressed through K

�
as

K
�
ir ¼ 0 as �r ¼ �t=2 ði ¼ r; y; zÞ: (4.4)

According to the usual shell theory, a set of generalized
stresses is introduced, representing the resultant forces and
moments per unit length along the mid-surface of the shell,24

as in Table 1. The relevant incremental stresses, based on the
Oldroyd increment, are defined as

n
�
�y ¼

ðt=2
�t=2

K
�
�yd�r; n

�
�z ¼

ðt=2
�t=2

K
�
�z 1þ �r=að Þd�r

m
�
�y ¼ �

ðt=2
�t=2

K
�
�y�r d�r; m

�
�z ¼ �

ðt=2
�t=2

K
�
�z�r 1þ �r=að Þd�r;

(4.5)

where r, y, z are to be substituted in place of the subscript �,
while K�y and K�z represent the �y and the �z components of the
Kirchhoff stress. Performing the integration of the incremental
equilibrium equations across the thickness of the shell and the
subsequent integration by parts with enforcement of the
boundary conditions,24 the incremental equilibrium can be
expressed as

m
�
yy;yy þ a m

�
yz þm

�
zy

� 
;yz
þa2m� zz;zz þ an

�
yy

� Pa2

t

ðt=2
�t=2

vy;yzz
�r

a
þ vz;zzz �rþ vr;zz

� �
1þ �r

a

� �
d�r ¼ 0;

an
�
yy;y þ a2n

�
yz;z �m

�
yy;y � am

�
yz;z

þ Pa2

t

ðt=2
�t=2

vy;zz 1þ �r

a

� �2

d�r ¼ 0;

an
�
zz;z þ n

�
zy;y þ

Pa

t

ðt=2
�t=2

vz;zz 1þ �r

a

� �
d�r ¼ 0;

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(4.6)

where P = Tzzt is the pre-stress load per unit length along the
mid-circular surface.

Table 1 The generalized variables adopted

nry Radial shear force nrz Transverse shear force
nyy Hoop force nyz Circumferential membrane shear force
nzy Longitudinal membrane shear force nzz Longitudinal normal force
myy Hoop bending moment myz Longitudinal twisting moment
nzy Circumferential twisting moment mzz Circumferential bending moment
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5 The bifurcation problem

For each of the considered constitutive models, the final
expressions for the Oldroyd increment of the Kirchhoff stress
K
�

based on eqn (2.10) are used for the computation of the
generalized incremental stress variables involved in the average
equilibrium eqn (4.6). The incremental displacements at bifur-
cation, based on the assumption of free sliding along perfectly
smooth rigid constraints on the upper (z = l) and lower (z = 0)
faces of the cylindrical shell (as commonly assumed25), are
defined as

�vrðy; zÞ ¼ c1 cosðnyÞ cos Zz=að Þ;

�vyðy; zÞ ¼ c2 sinðnyÞ cos Zz=að Þ;

�vzðy; zÞ ¼ c3 cosðnyÞ sin Zz=að Þ;

8>>><
>>>:

(5.1)

with the different modes selected by circumferential and long-
itudinal wave-numbers n = 0, 1, 2,. . . and Z = mpa/l (m = 1, 2,. . .),
respectively.

If vector cT = {c1, c2, c3} collects the amplitude of the
bifurcation modes, a substitution of eqn (5.1) in the linearized
kinematics, eqn (3.5), and in the average incremental equili-
brium eqn (4.6), leads to the standard bifurcation condition

M c = 0, (5.2)

requiring the singularity of matrix M, namely,

det M = 0. (5.3)

Eqn (5.3) only depends on the constitutive parameters, namely
the ratio b = m2/m1 for the Mooney–Rivlin material and the
hardening exponent N for the J2-deformation theory of plasti-
city, the circumferential and longitudinal wave-numbers n and
Z, the axial stretch lz and the dimensionless thickness of the
shell t = t/a = t0/a0. The critical axial stretch lz is computed from
eqn (5.3) as a function of the wave-numbers n and Z, the
geometrical variable t, and the constitutive parameters peculiar
to the constitutive law adopted. The dimensionless load for
bifurcation pz =�P/D (positive when compressive) can be finally
obtained, where the parameter D used to normalize the pre-
stress is the product of the current thickness t and a stiffness
parameter, represented by the shear modulus in the unloaded
state m for the Mooney–Rivlin (or neo–Hookean) model (D = mt)
or the stiffness parameter K for the J2-deformation theory of
plasticity (D = Kt), respectively.

6 Bifurcation of axially-loaded
incompressible thin-walled cylinders

Fig. 6 and 7 report the axial stretch at bifurcation for an axially-
loaded thin-walled cylinder consisting of a Mooney–Rivlin and
a J2-deformation theory material, respectively. For complete-
ness, both the cases of tensile and compressive axial stretch are
considered, including, in addition the case of Mooney–Rivlin
for comparison, even if in that case tensile bifurcations are
excluded so that only compression is considered. The latter

case will be shown to differ from the analogous treatment
by Flügge and for this reason it is worth to be included. The
axial stretch lz is plotted as a function of the longitudinal

Fig. 6 Bifurcation upper envelopes for the critical stretch lz of an axially-
compressed thin-walled cylinder (geometrical ratios re/ri = 1.01, 1.02, 1.06)
made up of a Mooney–Rivlin incompressible material with b = m2/m1 =
�0.1. The curves corresponding to different values of the circumferential
wave-number n and the relevant bifurcation modes (plotted on the cross-
section of the shell) are indicated with the symbol . All the bifurcations
here occur in compression, tensile bifurcations were not detected indeed.

Fig. 7 Bifurcation envelopes for the critical stretch lz of an axially-loaded
thin-walled cylinder (geometrical ratios re/ri = 1.01, 1.02, and 1.06) made
up of a J2-deformation theory incompressible material with exponent N =
0.1. The curves corresponding to different values of the circumferential
wave-number n and the relevant bifurcation modes (plotted on the cross-
section of the shell) are indicated with the symbol . Bifurcations here
occur both in compression and tension. The only modes differing in
tension and compression are necking and bulging, corresponding to n = 0.
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wave-number Z for different geometrical ratios. Two very small
thickness shells (re/ri = 1.01, re/ri = 1.02) have been analyzed, as
well as a shell (re/ri = 1.06) corresponding to the tested PP tubes.
Obviously, the thinner is the shell, the tighter to reality is the
two-dimensional model. The figures also report the cross-
section of the bifurcation modes. It is important to observe
that for the J2-deformation theory material pictured in Fig. 7,
bifurcations are detected for both compression (lz o 1) and
tension (lz 4 1), while only bifurcation under compression (lz

o 1) is foreseen for the Mooney–Rivlin material, Fig. 6. More-
over, while the loss of ellipticity with the potential outbreak of
shear bands is a priori excluded for a Mooney–Rivlin material, it
turns out to be possible for a J2-deformation theory material
when the boundary between the elliptic complex and the
hyperbolic regimes is attained (i.e. for N = 0.1, at lz C 0.448
and lz C 2.234 in compression and in tension, respectively).
Therefore, Fig. 7 indicates that loss of ellipticity has no effects
on the bifurcation envelope, because this condition is not
attained for thin shells.

In compression (lz o 1), the mode n = m = 1 corresponds to
Euler rod buckling and takes place when the shell is still almost
undeformed, lz C 1, for slender cylinders (with a slenderness
ratio L/a0 - N). This is true for both the analyzed materials.
Interestingly, only a number of the circumferential modes
illustrated in Fig. 6 and 7 are involved in the bifurcation
envelopes, according to the geometry of the thin-walled shell.
For moderately large values of the longitudinal wave-number Z
(according to the geometry of the shell), the cylinder undergoes
longitudinal wrinkling with n = 0, buckling into short long-
itudinal waves. Note that for the two very thin cylinders made
up of the Mooney–Rivlin material pictured in Fig. 6, this mode
is not evident within the range 0 o Z o 10, as it originates at
larger values of Z, here omitted for the sake of clarity.

For the J2-deformation theory material pictured in Fig. 7, a
variety of bifurcation modes becomes possible under both
tension and compression, before failure of ellipticity. For
lz 4 1 the three reported shells behave very similarly, regard-
less of their geometric ratios. Over a threshold, lz 4 �lz, (whose
value is asymptotically estimated in Section 7), in the limit m -

0, a necking-type mode with n = 0 occurs. The latter is a
bifurcation mode compatible with the boundary conditions,
characterized by a homogeneous transverse contraction and a
sinusoidal variation along the longitudinal direction with a
wavelength having the size of the cylinder length. Overall, the
J2-deformation theory material is found to correctly model
necking in the previously reported PP tube, Fig. 1. After the
occurrence of the first neck, the load tends to increase and this
leads to neck formation in other parts of the sample. Finally,
the appearance of higher-order modes is supported by the
circumstance that the critical stretch for those does not exceed
significantly (E10% for N = 0.1) the critical stretch for the
activation of necking. Therefore, after necks have invaded
the entire sample a rise in load occurs, thus leading to the
formation of higher-order modes.

In order to validate our generalization of the Flügge treat-
ment for thin shells, a comparison between the proposed two-

dimensional approach and the exact analysis (taken from
Bigoni and Gei22) is illustrated in Fig. 8, reporting the lower
bifurcation envelopes predicted for a J2-deformation theory
material in the case of a shell with a moderately thin wall, re/
ri = 1.10, under tension. A modest difference is evident, while
for thinner shells, the accuracy increases remarkably, so that
the differences between the two approaches cannot be appre-
ciated (as for instance when re/ri = 1.01). The results for the
moderately thin shell reported in Fig. 8 show that the 2D-
approach still allows a very precise prediction of necking, while
the accuracy decreases when both the wave-numbers n and
Z grow.

7 Asymptotic solutions for extreme
cases

Extreme cases are considered, involving both tension and
compression. For tension, necking is shown to occur at the
Considère axial stretch when the thickness of the tube’s wall
tends to zero. Moreover, a closed-form analytical expression for
the critical axial stretch for long-wavelength necking is pro-
vided. For compression, extreme cases are represented by
wrinkling instability and Euler buckling of a rod.24 For incom-
pressible materials wrinkling leads to a new expression for its
critical value: in particular, a new formula is provided for the
Mooney–Rivlin material, for which Flügge’s famous formula in
the limit n - 1/2 is not correct. Moreover, an expression for
Euler buckling of a cylinder made up of J2-deformation theory
of plasticity is provided.

7.1 Necking instability for the J2-deformation theory of
plasticity

As pictured in Fig. 7, tensile instability is predicted on the basis
of the J2-deformation theory of plasticity, and its onset requires
the attainment of a precise pre-stretch, representing the thresh-
old for the activation of a long-wavelength necking, the mode
with n = 0 and m - 0. In order to capture the asymptotic value

Fig. 8 Bifurcation lower envelopes for the critical stretch lz of a moder-
ately thin-walled cylinder (geometrical ratio re/ri = 1.10), made of a
J2-deformation theory incompressible material with exponent N = 0.1 and
subject to tension. The solid and dashed lines represent the predictions
according to the 3d-exact analysis and the current Flügge 2d-approach,
respectively, for different values of the circumferential wave-number n
corresponding to the different bifurcation modes indicated.
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for this axial pre-stretch, the determinant of matrix M in
eqn (5.2) is evaluated for n = 0 and further expanded in a power
series about Z = 0 up to the 5th-order,

detMjn¼0 ¼ 2ð363ÞZ4t log lz l3z � 1
� �5

l3zðt2 þ 12Þ þ 2t2
� �

2 3 log lz � 3N � 1ð Þ coth �1 2

t

� �
þ t

	 

þO Z6

� �
:

(7.1)

On enforcing vanishing of the above expression, and excluding
unacceptable solutions, a closed-form formula for the necking
onset of a thin-walled cylindrical shell made up of a J2-
deformation theory material is obtained

lz ¼ e
N� t

6 coth�1 2
t

� �þ 1
3
: (7.2)

Eqn (7.2), never reported so far, shows that the critical stretch �lz

only depends on the constitutive exponent N and on the
dimensionless thickness of the shell t.

Actually, eqn (7.2) displays an interesting feature in the limit
t - 0, where the cylindrical shell becomes an ‘ideal’ shell,
characterized by vanishing thickness. The limit yields exactly
the celebrated Considère formula (for J2-deformation theory)

l
0

z ¼ lim
t!0

lz ¼ eN ; (7.3)

showing that an ideal shell still admits a non-null value of critical
stretch, �l0

z = eN, for necking instability. In the case N = 0.1, the
shells reported in Fig. 7, characterized by re/ri = {1.06, 1.02,
1.01} and t = {0.05825, 0.0198, 0.00995}, are well represented by
the ideal shell approximation, with critical stretches �lz =
{1.10528, 1.10518, 1.10517} tending to the critical stretch of
the ideal shell, �l0

z E 1.10517.

7.2 Limit cases for bifurcations in compression

Longitudinal wrinkling. For mildly long cylindrical shells
made up of a linear elastic isotropic incompressible (n - 0.5)
material, the well-known solution by Flügge21 in terms of
dimensionless pressure,

pwz;Fl €ugge ¼
P

mt
¼ 2t; (7.4)

can be rigorously obtained on the basis of the proposed two-
dimensional approach for a material with neo–Hookean con-
stitutive law. However, eqn (7.4) is shown to be incorrect for a
Mooney–Rivlin material, so that the following new expression

pMRw
z ¼ 2ð1� bÞtþ 17b� 41

6
t2 þO t3

� �
; (7.5)

is obtained below. Eqn (7.5) provides the critical axial load for
longitudinal wrinkling of a Mooney–Rivlin material and
reduces to eqn (7.4) at the first-order when b = 0.

Eqn (7.5) can be obtained as follows. Within an intermediate
range of the wave-numbers Z, the bifurcation load turns out to
be almost independent of both wave-numbers n and m, as
visible in the lower curve in Fig. 9, representing the dimension-
less line force pMR

z for bifurcation of a Mooney–Rivlin material

with b = �0.1. The curve corresponding to the neo–Hookean
material was omitted in the figure, because only slightly below
but almost superimposed to the curve corresponding to the
Mooney–Rivlin material, in agreement with eqn (7.5). In order
to capture this flat portion of the curve, the critical axial stretch
lz is approximated by enforcing the singularity of matrix M in
eqn (5.2), first computed for null circumferential wave-number
(n = 0), then linearly expanded into a Taylor series about lz = 1.
The minimum of function pz(Z) with respect to the longitudinal
wave-number Z is sought by imposing the stationarity of func-
tion lz(Z), being pz(lz) a monotonic function. Five solutions are
found from the latter condition: one is trivial, two are imagin-
ary conjugates and two are reals with opposite signs. The only
admissible solution is selected and replaced in the expression
of pz(Z), successively developed as a Taylor series about t = 0, to
return eqn (7.5).

Finally, Fig. 9 reports also the bifurcation curve for pressure
pJ2z concerning the J2-deformation theory material. Differently
from the Mooney–Rivlin material (pMR

z ), the flat portion of the
curve leading to the longitudinal wrinkling is not present for the
J2-material, so that an equation analogous to eqn (7.5) cannot
be obtained for this material.

Euler rod buckling. The anti-symmetric mode of bifurcation
with m = n = 1 corresponds to the Euler buckling of a rod
constrained by sliding clamps at both ends. The fundamental
geometric parameter governing buckling is the stubbiness
ratio, measured in the undeformed configuration, a0 = a0/L.
The latter is related to the analogous parameter defined in the
current configuration as a = a/l = lr a0/lz L = lz

�3/2a0. The
asymptotic expression of the buckling load for both Mooney–
Rivlin and J2-deformation theory materials is derived below on
the basis of a perturbative approach,24,26 whose general proce-
dure is briefly outlined below. Upon generating a series

Fig. 9 Bi-logarithmic representation (two different vertical scales are
used) of the lower envelopes of the dimensionless load, p

J2
z (for the J2-

deformation theory material with N = 0.1) and pMR
z (for the Mooney–Rivlin

material with b = �0.1), vs. p/Z, for the axially-compressed thin-walled
cylinder with re/ri = 1.01. For moderate values of p/Z, the presence of a
horizontal flat portion of the curve (highlighted as a red dashed line),
corresponding to longitudinal wrinkling and leading to eqn (7.5), is evident
for the Mooney–Rivlin material (and also for the neo–Hookean, not
reported as almost superimposed to the Mooney–Rivlin material), but
absent for the J2-material.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 9

/3
/2

02
4 

8:
49

:4
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D4SM00463A


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 5703–5714 |  5711

expansion of order I for the axial stretch around the
unstretched configuration as lz = 1 + lzia

i, 1 r i r I, the
expression taken by the determinant of matrix M in eqn (5.2)
with the approximation for lz above is first computed for both
m = 1 and n = 1, and then expanded into a Taylor series about
a = 0 (slender columns) up to order I + 2. Enforcing the vanishing
of the coefficients for all the exponents of a in the expansion of
det M|m=n=1, the approximation for lz is made explicit, and turns
out to involve only even powers of a. The condition a2lz

3 = a0
2 is

used at this stage to connect the current and initial stubbiness
ratios, by introducing the obtained approximation for lz,
together with the approximation a = a0ja

j
0, 0 r j r J (a poster-

iori, only odd powers are found to be different from zero).
Enforcing that all the exponents of a0 have null coefficients,
the asymptotic solution for the critical axial stretch lz as a
function of a0 is finally obtained and substituted into the
expression for the current longitudinal force (positive when
compressive) on the cylinder:

Nz = �p(re
2 � ri

2)Tzz = �plz
�1(Re

2 � Ri
2)Tzz. (7.6)

In this way the well-known critical axial force for Euler
buckling is derived for the two considered constitutive models.
� For the Mooney–Rivlin model, the result provided by

eqn (7.6), further expanded into a power series about a0 = 0
up to the 4th-order, is

NMR
z ¼ p3

144
ma02t 432þ 120t2 � t4

� �
a02 þO a04

� �
(7.7)

Remarkably, up to the considered order of approximation, the
asymptotic solution is independent of the constitutive para-
meter b. Therefore, the Euler buckling loads for the neo–
Hookean and the Mooney–Rivlin incompressible materials turn
out to have the same asymptotic expressions. Moreover, the
solution in eqn (7.7) coincides with the corresponding equation
[eqn (6.20) in the ref. 24] for a compressible neo–Hookean
material in the limit as n - 1/2.
� For the J2-deformation theory of plasticity, the simplest

form for the leading term of the solution, eqn (7.6), is obtained
using second-order approximations for both the axial stretch lz

and a(a0). The expression never obtained so far,

NJ2
z � 2pKa02t

� log zð ÞN

z
(7.8)

with z ¼ 1þ p2
864

a02 t4 � 12ð1þ 9NÞt2 � 432N
� �

, provides a very
good approximation for the Euler buckling solution for a0 - 0.

8 Conclusions

Quasi-static tensile tests on thin-walled tubes made of poly-
propylene show new features, involving necking nucleation and
growth, multiple neck formation, and occurrence of higher-
order bifurcation modes, with trefoil or fourth-foiled (and,
rarely, even fifth-foiled) transverse shape. The necking develops
during a highly-ductile plastic flow and surprises because
the tube wall is thin, so that stress triaxiality does not follow

instability. Such a peculiar behaviour was not found by us, at
least up to the observed extent, on any other material.

To model these experimental findings, the celebrated bifur-
cation theory for compressed cylinders proposed by Flügge has
been generalized to include tension, incompressibility, and a
broad class of nonlinear elastic constitutive laws, which may also
describe the plastic branch of ductile materials, the so-called
J2-deformation theory of plasticity. The theoretical framework
has revealed a number of new results valid for thin-walled
cylindrical shells: (i) in tension, closed-form formulas for neck-
ing, revealing that the Considère formula corresponds to the
‘ideal shell’ limit; in compression, (ii) wrinkling of a Mooney–
Rivlin material, thus improving and extending a famous result
from Flügge, and (iii) Euler buckling for Mooney–Rivlin and J2-
deformation theory of plasticity materials.

The J2-deformation theory of plasticity has been shown to
correctly model the onset of the observed necking in PP tubes,
the formation of multiple necking, and the occurrence of
higher-order modes, with the latter two effects related to the
‘flatness’ of the bifurcation curve in tension.
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Appendix
A Experimental evidence of necking in tubes

Several tensile tests were performed directly on PP and metal
tubes, while three tests were executed on dog-bone samples
(cut out after sectioning the PP tubes along a generatrix), using
an electromechanical testing machine (Messphysik Midi 10 for
the PP tubes and Messphysik Beta 100 for the metal tubes)
under displacement control at a speed of 0.5 mm s�1. The load
was measured by means of a REP TC4 (RC 10 kN) and a REP
TC4 (RC 100 kN) loading cells, and the displacement of the
crossbar of the testing machine was recorded.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 9

/3
/2

02
4 

8:
49

:4
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D4SM00463A


5712 |  Soft Matter, 2024, 20, 5703–5714 This journal is © The Royal Society of Chemistry 2024

The results from a dozen of tests on PP tubes (all character-
ized by initial dimensions: 6.5 mm initial diameter, 0.18 mm
thickness, and 205 mm length) are reported in Fig. 10, in terms
of nominal stress vs. conventional strain curves. Three tests on
dog-bone samples provided results in agreement with those
performed on tubes. However, the flattening of the samples
after excision from a cut tube induces a strong initial stress
state, so that these tests were not continued and are not
reported. Overall, the experimental results suggested the use
of N = 0.1 in the reported numerical examples for bifurcation.

The geometry of the PP tubes was carefully investigated in
terms of variation in diameter and thickness, to reveal fabrication
defects and to select the ‘best’ samples for subsequent testing.

The variability in diameter (minimum and maximum values)
was evaluated at 5 equally-spaced sections along the tube for 31
samples, using a Palmer caliper (accuracy �0.002 mm). The
extreme minimum and maximum diameters were found to be
6.02 mm and 7.35 mm, respectively. Along the length of each
sample, standard deviation for all measured diameters (10 data)
fluctuates between 0.02 mm and 0.57 mm (note that this para-
meter was found to be smaller than 0.1 mm in 11 samples). The
thickness, detected at 13 different sections on 7 samples cut along
a generatrix, exhibits a much smaller variability, with its average
value being 0.18 mm.

While tests on the metal tubes were standard, the experimental
setup for the tests on PP tubes involved a non-standard
feature shown in Fig. 11, namely, the tensile grip of the PP tube.
Three alternatives have been tested for the constraints at the tube

Fig. 10 Nominal stress vs. conventional strain data for tensile tests on
polypropylene (PP) thin-walled tubes (6.5 mm initial diameter, 0.18 mm
thickness, 205 mm length). With a couple of exceptions, the samples were
brought up to a conventional strain of approximately 5 where the test was
terminated before failure. Three different gripping devices have been
tested and the relevant experimental data are reported using the same
colour. The ‘radial clamp’ was designed by us and is shown in Fig. 11.

Fig. 11 The experimental set-up for tensile tests on polypropylene (PP) thin-walled tubes. It is based on an electromechanical testing machine
(Messphysik Midi 10). The ‘radial clamp’ device is shown on the right.

Fig. 12 Photographs taken after the failure of metallic tubes subject to a
tensile test. From the upper to the lower side: copper and aluminium tubes
(Ri = 6 mm, and Re/Ri = 1.2) and two steel tubes (Ri = 6 mm, Re/Ri = 1.25, and
Ri = 8 mm, Re/Ri = 1.23). While the steel tubes show an initial development
of necking, the latter is not observed in neither copper nor aluminium tubes.
Multiple necking and development of higher modes were not found. These
metallic samples behaved completely differently from the PP tubes.
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ends: (i) standard wedge action tensile grips (from Instron), which
squeezed the ends of the tube, therby triggering the initiation of
necking; (ii) the wedge action tensile grips, in which a tight-fitting
thru axle was inserted to prevent the squeezing of the tube, and
(iii) a ‘radial clamp’ device (detailed in Fig. 11 on the right) fixed
against the entire external surface of the tube ends, in which a
tight-fitting thru axle was inserted. Fig. 10 clearly shows that
results in terms of nominal stress/conventional strain are only
weakly affected by the different clamping conditions. The same
modest sensitivity to end conditions was observed for multiple
necking and development of higher-order modes. These features
are shown for two tests performed with the ‘radial clamp’ in Fig. 1
and also in Fig. 13, added for completeness. Videos of experi-
ments are available in the ESI.† It is worth mentioning that the
stress/strain curves reported in Fig. 1, 10 and 13 look very similar
to the ones obtained for a polycarbonate compact rod under
tension at different strain rates.27

In order to confirm the peculiar behaviour of PP tubes,
evidence of necking was investigated in metal tubes made up of
copper and aluminium (initial dimensions Ri = 6 mm, Re/Ri =
1.2) and steel (two samples having initial dimensions Ri =
6 mm, Re/Ri = 1.25, and Ri = 8 mm, Re/Ri = 1.23). Photographs
taken after failure under uniaxial tension are reported in
Fig. 12, which show that a moderate necking was only observed
in the steel tubes (which are also thicker than the others), while
multiple necking or higher-order modes were not found.
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