Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Coarse-Grained Fundamental Forms for
Characterizing Isometries of Trapezoid-based
Origami Metamaterials

James Mclnerney

James . .mcinerney,.b.ctr@afrl . .af.mil

University of Michigan https://orcid.org/0000-0002-9235-3385

Diego Misseroni
University of Trento https://orcid.org/0000-0002-7375-671X

Glaucio Paulino
Princeton University https://orcid.org/0000-0002-3493-6857

D. Rocklin
Georgia Institute of Technology

Xiaoming Mao
University of Michigan https://orcid.org/0000-0001-7920-3991

Article

Keywords:

Posted Date: October 11th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-5045672/v1

License: € ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: There is NO Competing Interest.


https://doi.org/10.21203/rs.3.rs-5045672/v1
https://doi.org/10.21203/rs.3.rs-5045672/v1
https://orcid.org/0000-0002-9235-3385
https://orcid.org/0000-0002-7375-671X
https://orcid.org/0000-0002-3493-6857
https://orcid.org/0000-0001-7920-3991
https://doi.org/10.21203/rs.3.rs-5045672/v1
https://creativecommons.org/licenses/by/4.0/

1 Coarse-Grained Fundamental Forms for Characterizing Isometries of Trapezoid-based

> Origami Metamaterials

3 James P. Mclnerney* and Xiaoming Mao

4 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

5 Diego Misseroni

6 Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Trento 38123, Italy
7 D. Zeb Rocklin

8 School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

9 Glaucio H. Paulino

10 Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544 and
1 Princeton Materials Institute (PMI), Princeton University, Princeton, NJ, 08544

12 (Dated: September 6, 2024)

Investigations of origami tessellations as effective media reveal the ability to program the compo-
nents of their elasticity tensor. However, existing efforts focus on crease patterns that are composed
of parallelogram faces where the parallel lines constrain the quasi-static elastic response. In this
work, crease patterns composed of more general trapezoid faces are considered and their low-energy
linear response is explored. Deformations of such origami tessellations are modeled as linear isome-
tries that do not stretch individual panels at the small scale yet map to non-isometric changes of
coarse-grained fundamental forms that quantify how the effective medium strains and curves at
the large scale. Two distinct mode shapes, a rigid breathing mode and a nonrigid shearing mode,
are identified in the continuum model. A specific example, called Morph-derivative trapezoid-based
origami, is presented with analytical expressions for its deformations in both the discrete and contin-
uous models. A developable specimen is fabricated and tested to validate the analytical predictions.
This work advances the continuum modeling of origami tessellations as effective media with the
incorporation of more generic faces and ground states, thereby enabling the investigation of novel

designs and applications.

13 INTRODUCTION

1 Origami sheets are two-dimensional surfaces with pre-
15 defined creases that control their three-dimensional re-
16 sponse to mechanical loads [1-4]. The fundamental prin-
ciple behind the behavior of origami is the difference be-
18 tween the energy scales of elastic deformations that bend
the panels (cubic in sheet thickness) and elastic deforma-
» tions that stretch the panels (linear in sheet thickness).
This scaling leads to a quasi-static, low-energy response
dominated by the deformations that do not stretch the
23 panels, which we refer to as linear isometries. Since
this principle relies solely on the thickness of the sheet,
»s the linear isometries corresponding to a particular crease
»% pattern are largely material independent and therefore
realizable in both metallic [5-9] and polymeric [10-12]
materials over a range of length scales. Hence, an un-
derstanding of the origami kinematics tends to be more
s consequential than an understanding of the origami dy-
31 namics for the design of origami metamaterials. There
3 are two specific applications of origami kinematics that
33 motivate our work.

s The first application of interest is the class of isome-
tries referred to as rigid folding mechanisms that fold
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the origami sheet along its predefined creases while keep-
ing the panels entirely rigid (no stretching or bending).
These rigid folding mechanisms are useful for the deploy-
ment and transformation of structures found in various
engineering applications including solar arrays [13, 14],
heart stents [15], and temporary shelters [16]. How-
ever, arbitrary quadrilateral-mesh crease patterns are not
rigidly foldable and a significant body of work is de-
voted towards the development of design principles [17—
22]. Moreover, arbitrary loads can lead to heterogeneous
actuation of the mechanism [23, 24] as well as undesirable
deformations due to the existence of isometries distinct
from the rigid folding mechanism [25] or the intersec-
tion of separate branches in the configuration space [26].
Therefore, efficient models for the response to external
loads can inform the methods for deployment and trans-
formation of origami structures along the programmed
rigid mechanism without exciting undesirable responses
via alternative low-energy instabilities.

The second application of interest is the continuum ap-
proximation (i.e., homogenization or coarse-graining) of
linear isometries in periodic origami tessellations. Such
approximations are valuable for both surface fitting [27]
and effective elasticity models [28-30], where deforma-
tions that do not stretch the individual panels generate
apparently non-isometric deformations at the large scale.
The main example in the existing literature is the class of



63 parallelogram-based origami sheets, such as the Miura-
o+ ori crease pattern [31, 32]. An origami tessellation in
es this class is quasi-planar, in that its two primitive lat-
66 tice vectors always lie in the same two-dimensional plane,
e and exhibits one rigid folding mechanism that changes its
lattice vectors. Simultaneously, such a tessellation also
exhibits two nonrigid linear isometries that bend the pan-
els in addition to folding the creases. Approximating the
7 origami tessellation as a continuous sheet reveals that the
722 rigid isometry generates in-plane strain, the first non-
7 rigid isometry generates out-of-plane curvature, and the
= second nonrigid isometry generates out-of-plane twist-
75 ing [31-36]. These three modes function as a basis for
7 more general low-energy deformations in effect contin-
7 uum models [29, 30]. Moreover, analytical calculations
73 show the crease geometry necessarily pairs a hydrostatic
(dilation) strain mode with an anticlastic (saddle) cur-
s vature mode and a deviatoric (pure shear) strain mode
with a synclastic (dome) curvature mode [31-36].
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2 Our work seeks to expand the investigation of
parallelogram-based origami sheets to more generic tes-
sellations which possess two crucial differences from those
composed of parallelograms [37, 38]. The first differ-
ence is that a generic tessellation is quasi-cylindrical,
rather than quasi-planar, in that its two primitive lat-
tice vectors rotate about a common axis from cell to cell.
The second difference is that such a quasi-cylindrical tes-
sellation exhibits two linear isometries (rather than the
one rigid and two non-rigid isometries discussed in the
previous paragraph) that retain the quasi-cylindrical ge-
ometry while changing its radius, height, and symme-
try axis. We investigate these two linear isometries in
rigidly-foldable trapezoid-based origami (TBO) tessella-
o6 tions, for which the constituent trapezoid faces have one
o7 less symmetry than the previously investigated parallel-
s ogram faces, to exemplify continuum approximations for
o the linear isometries in quasi-cylindrical origami tessel-
lations. We show exemplar TBO folded from cardstock
in their ground state configurations in Figs. 1(A-D)(i)
and in rigidly folded configurations in Figs. 1(A-D)(ii).
While such rigid folding mechanisms of TBO are identi-
fied for select geometries, such as the arc pattern, in pre-
vious works [39, 40], our work also identifies and models
the nonrigid isometries shown in Figs. 1(A-D)(iii). Our
theoretical model has two components. The first com-
ponent determines and solves the compatibility condi-
tions for the linear isometries within a single cell, which
we show can be represented using the compatibility di-
agrams shown in Figs. 1(A-D)(iv) where the meaning of
the line styles and colors is explained in Supplemental
Appendix, TBO Examples. The second component maps
these linear isometries to their continuum approximation,
which decomposes into one rigid breathing mode and one
nonrigid shearing mode. We showcase our analytical re-
sults for a class of origami crease patterns derived from
the geometry presented in Ref. [34] that we refer to as the
1o Morph-derivative TBO and perform laboratory scale ex-
120 periments on a specimen manufactured from polypropy-
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Periodic origami tessellations with generic faces adopt
124 quasi-cylindrical ground states generated by the two
s primitive lattice vectors (£ 2) and the two primitive lat-
16 tice rotation matrices (S12) (see Fig. 2A). As shown in
7 Refs. [37, 38], the lattice rotations share a common axis

123

w2 () about which local frames are rotated by the respec-
19 tive lattice rotation angle (11,2) (see Supplemental Ap-
1o pendix, Lattice Compatibility for further details). Fur-
1 thermore, the lattice vector components orthogonal to
12 S define a unique radius of curvature (R). Thus, we
coarse-grain the lattice-scale geometry by taking the dis-
crete cell indices (n1, ng) to the continuous surface co-
ordinates (¢, z) (see Methods, Coarse-Graining) and ap-
proximate the cylindrical ground state via the embedding
X(p,2) = Rcos@i+ Rsinpj+z2. From the embedding,
we compute the tangent vectors t, = 9,X (using sub-
scripts p, v to denote the surface coordinates) and the
normal vector 7 = t, X t,/|t, X t;| to construct the first
fundamental form 1,,, = t, - t,, the second fundamental
form II,,, =7 - 0,t,, and the shape operator & = oI

R2 0
= (1Y),
—R 0
II:(O O),
19
— R
s (0 0).

The shape operator has eigenvalues equal to the princi-
pal curvatures (k1 = —1/R, k2 = 0), eigenvectors equal
to the principal directions (171 = (1,0), v, = (0, 1)), de-
terminant equal to the Gaussian curvature (K = 0), and
trace equal to twice the mean curvature (2H = —1/R).
As shown in Refs. [37, 38|, at the lattice-scale, these
origami sheets generically exhibit two linear isometries
under periodic boundary conditions which change the
lattice vectors (€12 — €12 + A;3) and the lattice ro-
tation matrices (S1,2 — (1 + L1 2)S1,2), thereby induc-
ing changes in the radius (R — R + dR) and the rota-
tion axis (S — S + 05) while preserving the cylindri-
cal character to first order (see Supplemental Appendix,
Lattice Compatibility). We write the generic deforma-
tion X — X + 06X in terms of the vector field 6X =
0 X, (cos o + sin ) + 0 X, (—sinpz + cosy) + 60X,z
and determine the changes in the radial direction (6.X,,),
the azimuthal direction (0X,), and the axial direction
(0X) that are mutually consistent with cylindrical defor-
mations below (see Supplemental Appendix, Continuum
16 Deformations).
Since cylinders have zero Gaussian curvature, the de-
16s formation must satisfy 6K = 0. The in-plane strain
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FIG. 1. Examples of trapezoid-based origami folded from cardstock (i) quasi-cylindrical ground states, (ii) rigid folding
cylindrical isometry (iii) non-rigid shear isometry, and (iv) diagramatic representation of compatibility conditions with line
styles signifying the coupling between amplitudes on the adjoined vertices and triangles indicating periodic directions (see
Supplemental Appendix, Example TBO for more details). (A) Cylindrical geometry from Miura-derivative. (B) Extension of
the pattern in panel A exhibiting a locked configuration. (C) Archimedean spiral from a graded Miura-derivative pattern. (D)
Lemniscate of Bernoulli from a graded Miura-derivative with a parallelogram interface.



(D)

FIG. 2. Coarse-grained geometry. (A) Angled view of a quasi-
cylindrical trapezoid-based origami tessellation with lattice
vectors £; 2, lattice rotation axis S, and characteristic height
h. (B) Top-down view of the tessellation shown in panel A
with lattice rotation angle 71, radius R, and azimuthal surface
coordinate ¢. Continuum illustration of the (C) breathing
mode and (D) shearing mode induced by the linear isometries
of the tessellation shown in panel A.

166 along the azimuthal and axial directions take arbi-
w7 trary, but spatially constant, values (6l,, = €4, and
s 01, = €,.) because they are unconstrained by the cylin-
10 drical character of the deformation. Lastly, we con-
sider a generic deformation as a linear combination of
a breathing mode that changes the first principal cur-
vature (0k; = —6R/R?) without changing the principal
directions (691 = (0,0), 0v = (0,0)) and a shearing
mode that changes the principal directions ((5171 = (0,01),
ws 0Uy = (02,0)) without changing the first principal cur-
ws vature (0k; = 0). Such modes are the only two homo-
177 geneous deformations that maintain the cylindrical char-
ws acter (see Supplemental Appendix, Continuum Deforma-
tions). Here, ey, €.., 0R, 01, and o9 all depend implic-
itly on the geometry of the underlying crease pattern,
and this relationship constitutes the basis of the origami
sheets as mechanical metamaterials. We find that the
183 breathing mode (illustrated in Fig. 2C) is quantified by
1w 0X, =0R, 6X, = (e4p/(2R)—0R) ¢, and 6 X, =¢..2/2.
1ss The corresponding changes to the fundamental forms are
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17 We find that the shearing mode (illustrated in Fig. 2D)
s is quantified by 6.X,, =0, 0X, = e,,0/(2R)+01 Rz, and

1 0X, = €,,2/2 + o2¢. The corresponding changes to the
100 fundamental forms are written:
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Our work focuses on applying the above analysis to the
192 particular case of rigidly foldable TBO, including all of
103 the crease patterns shown in Figs. 1(A-D)(i) and, more
s generically, crease patterns for which the parallel edges
of the trapezoidal faces ensure £; L S and £5 || S along
the rigid folding configuration manifold. For the crease
pattern in Fig. 1(A)(i), the orientation of the lattice vec-
tors is because the subsequent parallel edges rotate the
faces by complementary dihedral angles so that there is
no net rotation, similar to the reason a parallelogram-
based origami sheet stays planar. However, for the
crease pattern in Fig. 1(B), the dihedral angles are not
complementary but still sum to 27. The consequence
is that the rigid folding mechanism (demonstrated in

Figs. 1(A-D)(ii)) is characterized by the breathing mode
of Eqn. (2), and, by process of elimination, the remaining
isometry (demonstrated in Figs. 1(A-D)(iii)) is charac-
terized by the shearing mode of Eqn. (3). Interestingly,
the crease patterns shown in Figs. 1(C,D) exhibit similar
behavior despite have spatially varying crease patterns,
and hence spatially varying radii, that only repeat along
the rotation axis.

We provide more clarity on these modes by developing
unit cell compatibility conditions for the class of TBO
with parallel edges that alternate in length. Rather than
triangulating the crease pattern as frequently done in
previous works [31-35], we separately consider folding
degrees of freedom on the vertices, denoted by the ver-
tex amplitudes V, and bending degrees of freedom on
the faces, denoted by the face amplitudes F (see Meth-
ods, Linear Isometry Model) as introduced in Ref. [30]
for the special case of parallelogram-based origami. The
amplitude on a vertex maps to changes in the dihedral
angles, which are not required to be uniform along the
edge unless the isometry is rigid. Instead, a gradient

R2(71 + (72)
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26 in the folding along a crease generates bending of the
27 adjacent faces, as quantified by the respective face am-
»s plitudes. For this reason, constraints on the face am-
2o plitudes can be integrated out, thereby yielding compat-
2% ibility conditions that map from vertex amplitudes to
23 vertex constraints which we illustrate via the compati-
2 bility diagrams shown in Figs. 1(A-D)(iv). Here, each
233 node is assigned a vertex amplitude and the line style of
2. the edges indicate coupling coefficients that depend on
235 the crease geometry (see Supplemental Appendix, TBO
226 Examples). When the coupling coefficients are uniform
along the edges, such as in Fig. 1(A)(iv), the rigid mode
(F = 0 for all faces) is represented by uniform assignment
of vertex amplitudes (V = 1 for all vertices). In contrast,
when the coupling coefficients are nonuniform along the
edges, such as in Fig. 1(B)(iv), the vertex amplitudes of
the rigid mode are proportional to one another to ensure
the folding is uniform along the creases. In either case, we
find that this family of TBO always exhibits a nonrigid
mode represented by uniform face amplitudes (F =1 for
all faces) and zero vertex amplitudes (V = 0 for all ver-
tices). Since the breathing (shearing) mode is generated
by the rigid (nonrigid) isometry, its modal stiffness de-
pends entirely on the stiffness of the creases (faces). This
representation of the isometries effectively integrates the
three-dimensional geometry out of the analysis to enable
a succinct analytical classification of the modes.
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Analysis of Morph-derivative Trapezoid-based
Origami

253
254

We consider the family of Morph-derivative TBO, such
as the example shown in Fig. 3(A). Similar to the fam-
ily of Morph parallelogram-based origami introduced in
Ref. [34], the unit cell of these periodic crease patterns is
constructed from copies of a base vertex that is param-
eterized by the two independently chosen sector angles
« and . The three remaining vertices of the cell have
identical or supplementary (o' = m—a, 8’ = 7—f3) sector
angles and the distinction in the present work is that the
vertices are arranged to form trapezoid faces rather than
parallelograms. We exclusively consider isosceles trape-
zoids to simplify analytic expressions, but our model ap-
plies to tessellations composed of more general trapezoids
and with larger unit cells. Thus, each of the trapezoids
has two legs of length ¢, one base of length p, and one
base of either s, = p —2gcosa or sg = p + 2qcosf3 (
see Fig. 3(B) ). This yields the three-dimensional design
space («, 8,q/p) for Morph-derivative TBO, where the
magnitude of p dictates the scale of the system which
has no role in our kinematic analysis.

Such a crease pattern has a a rigid folding mecha-
nism that we parameterize via the dihedral angle ~ from
which the remaining dihedral angles shown in Fig. 3(C)
(0,0" =27—0, 1, and Y"" = 2w —1)) are determined. The
configuration manifold for a geometry with Ny cells in the
azimuthal direction is bounded by the closure condition
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2a1 of the faces v = m shown in Fig. 3(F) and the closure con-
22 dition of the cylinder nN; = 27 shown in Fig. 3(H). We
find these conditions restrict the space of viable configu-
rations and system sizes, but we do not provide a thor-
ough exploration of the design space in this work. We
write the explicit expressions for the geometry along the
rigid folding mechanism in Methods, Morph-derivative
TBO Geometry. We compute the coarse-grained funda-
250 mental forms for a generic ground state then we use the
200 ean curvature to determine the radius and the Jacobian
201 to determine the characteristic height:

283
284
285
286
287

288

(4)
(5)

csc Q,

1
R:Z(p+sﬁ+(p+sa)cosg) 5

h = 2gsin asin B siny csc g

We find the components of the fundamental forms exactly
match those shown in Eqn. (1). We show the radius as
204 & function of the height along the configuration manifold
s in Fig. 3(E), and use the inset to highlight a change in
slope after the cylinder reaches its maximum height as
shown in Fig. 3(G). Since we have explicit formulae for
208 the radius and the height, it is straightforward to expand
200 the fundamental forms about infinitesimal changes to the
dihedral angle v along the rigid mechanism (see Supple-
mental Appendix, Morph-derivative Isometries). How-
ever, we utilize our framework for the rigid isometry to
compare it with existing methods.

We first construct the compatibility diagram shown
s in Fig. 3(D) to determine the amplitude representation
for the rigid isometry. Since there are three unique di-
a7 hedral angles, we define the three folding coefficients
30e ( = sinasinBsiny, € = sina?siné, and y = sin 2 siney
a0 to quantify the respective changes in the dihedral an-
a0 gles 0y, —dv, and —d6. We see each edge of the dia-
su gram has a single color, and therefore conclude the rigid
312 isometry of the mode is represented by the vertex ampli-
us tudes V@ = VP = V¢ = P? = 1 and the face amplitudes
e FA = FB = F€ = FP = 0. We integrate the changes
a5 in the lattice vectors and the lattice rotation matrices,
a6 then average according to our coarse-graining procedure
317 to find:
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_ s MY esc3 !
R = 4(p+sa+(p+85)cos )csc 5 (6)

2

— (2 in ! U
Epp =C cscnR(4Rs1n4 + (p+ sq) cos 2)7 (7)
(8)

€., = 2sinasin f cos 5 €08 o
ss where we determine €,, and ¢, directly from ¢1,, and
s10 01, respectively. These results are self-consistent with
s20 the continuum model which equates 61l,, = 6R—¢€,,/R
21 and 0S8, SR/R?, and we obtain them using a
s22 slight adjustment to the averaging step of our coarse-
23 graining procedure (see Supplemental Appendix, Morph-
24 derivative Isometries). However, the Jacobian relating
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FIG. 3. Morph-derivative trapezoid-based origami. (A) Perspective view of an example configuration with N1 = 4 cells in the
azimuthal direction and Ny = 4 cells in the axial direction. (B) Primitive cell with vertices labeled a, b, ¢, and d, faces labeled
A, B, C, and D, and edge lengths labeled p = 1, ¢ = 0.7, sa, and sg. (C) Sector angles labeled o = 1.1, @' =7 — o, § = 2.1,
B’ = m— B and dihedral angles labeled v, 9, " = 27—, and 6, §” = 2 — 0. (D) Compatibility diagram for vertex amplitudes
with edges representing the coupling coefficients based on the folding coefficients ¢, &, and x. (E) Nonlinear evolution of the
height and radius of the crease pattern shown in panel A along the rigid folding mode, with the flat folded state shown in
panel F, maximal height state shown in panel G, and closed state shown in panel H. (F-H) Front and top-down views of states
labeled in panels E, 1. (I) Linear response along the configuration manifold as a function of the dihedral angle, v, quantified by

the pitch p induced by the non-rigid mode and the ratio dh/dR of the rigid mode.

25 the discrete lattice coordinates to the continuous surface
16 coordinates plays an important role here: the terms en-
a2 tering the fundamental forms in Eqn. (2) are not given
28 by the partial derivative of those in Eqn. (1) with respect
39 to the dihedral angle that functions as the configuration
30 parameter. Instead, the strains arise from the deriva-
a1 tives of the Jacobian which highlights the way the lattice
32 geometry gives rise to the effective behavior of the mate-
313 rial. The axial strain €., maps to changes in the height
31 0h = he,, /2 of the cylinder whereas the azimuthal strain
335 €4, Opens or closes the cylinder without changing its cur-
136 vature, which instead are characterized by d R. We con-

s sider the ratio §h/dR analogously to the Poisson’s ratio
but instead characterizing the relative amount of axial
stretching and radial dilation. We see from our expres-
sions in Eqns. (6, 8) that when one of the dihedral angles
sa (¢ or 0) changes its mountain/valley assignment this ra-
a2 tio changes signs, which is the same observation made for
a3 the Poisson’s ratio in parallelogram-based origami. This
s further illustrates the functionality of Morph-derivative
TBO as a transformable mechanical metamaterial.

338
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We repeat this analysis for the nonrigid isometry which
we cannot describe in terms of changes to the dihedral
angles exclusively. Since this crease pattern falls within

346
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348



u9 the broader set of TBO that our theory applies to, the
30 nonrigid isometry is represented by the vertex amplitudes
3 V? = Vb = V¢ = P4 = 0 and the face amplitudes FA =
s FB = F¢ = FP = 1. We again integrate the changes
353 in the lattice vectors and the lattice rotation matrices,
34 then average according to our coarse-graining procedure
35 to find:

9)
(10)

01 = 17
1
oy = —R*— 1(]02 + Sasg) tangcscg,

where we determine ¢; and oy directly from S,, = 01 /R
and S,. = o02/R and find that the diagonal compo-
nents of the strain vanish: €,, = ¢,, = 0. We confirm
these quantities are self consistent with 61,, = 61,, =
R%0, + 09, 0ll,, = 0Il,, = Ro, without any adjust-
ment to the averaging step of our coarse-graining pro-
cedure. Here, there is an apparent discrepancy regard-
ing the units of o1 and o9: from dimensional analysis
of Eqn. (3), o1 must have units of inverse area and o9
must be dimensionless. However, our calculations lead-
ing to Eqns. (9, 10) use a dimensionless face amplitude to
simplify our calculations while the integration framework
assumes the face amplitude has units of inverse length.
This is in contrast to the vertex amplitudes which are
always dimensionless. Introducing such a length scale,
for example from the square root of the cell area, re-
solves the apparent discrepancy. The self consistency of
our results relies on both the averaging process in our
coarse-graining method and the inclusion of the Jacobian
to transform from the discrete lattice coordinates to the
continuous surface coordinates. While for the nonrigid
isometries of parallelogram-based origami the averaging
is also important, the Jacobian may be neglected because
the ground states are quasi-periodic.
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Experiments of Miura-derivative Trapezoid-based
Origami

380
381

s We fabricate and test an example Morph-derivative

TBO crease pattern (see Methods, Fabrication and Test-
ing). We select a developable pattern (8 = 7 — ) so
35 that we can construct the crease pattern from a mono-
s lithic sheet (see Fig. 4(A)) rather than the assembly of
se7 individual panels, such as done in Ref. [41]. For this rea-
as son, we refer to this family of crease patterns as Miura-
a0 derivative TBO, whereas it is called the arc pattern in
w0 previous work [39, 40]. Since the sector angles are not
301 independently chosen, these crease patterns have a two-
s dimensional design space parameterized by («, ¢/p) with
303 the geometry indicated in Figs. 4(B,C,E) and the com-
300 patibility diagram illustrated on the cell geometry in
w05 Fig. 4(D). After fabrication, the creases undergo plas-
306 tic deformation and adopt the quasi-cylindrical ground
a7 state shown in Fig. 4(F); the tessellation tends to return
38 to this particular configuration after any deformation.
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We perform a quantitative test of the nonlinear rigid
isometry and a qualitative test of the linear nonrigid
isometry. For the rigid isometry, we focus on the re-
lationship between the height and radius then compare
with our analytical theory. Rather than averaging over
the vertices, which could lead to the accumulation of sys-
tematic error, we measure the radii of the innermost (R;)
and outermost (R.) components of the cross section. We
show the experimentally measured values and the ana-
lytical predictions in Fig. 4(G), along with images of the
exact configurations measured in Fig. 5. We see good
agreement between the measurements and predictions
until the tessellation becomes fairly flattened at configu-
ration 8. We attribute this discrepancy, which becomes
more pronounced as the tessellation flattens further, to
systematic error arising from the large angle subtended
by the radial measurement. For the nonrigid isometry, we
focus on the general shape induced under loading condi-
tions incompatible with the rigid mode. We show the
response of the sample loaded and supported from op-
posite corners in Fig. 4(H). We see the type of shearing
mode that is consistent with the mode shape shown in
Fig. 2(D) based on our analytical calculations.

DISCUSSION

Our work develops analytical expressions for the large-
scale low-energy deformations of rigidly foldable TBO
and demonstrates the validity of our theory through ex-
periment. We identify TBO as an architecture for con-
trol of shearing and breathing modes of surfaces through
the geometry of the underlying crease pattern. Interest-
ingly, we find the mountain/valley assignment controls
the sign of the slope of the height-radius profile in the
same way that the assignment controls the Poisson’s ratio
of parallelogram-based origami [34]. These results show-
case new functionality for origami as mechanical meta-
materials. Further development is required for the exper-
imental demonstration of isometries in non-developable
TBO, as well as the quantitative validation of the rigid
isometry near the flattened state and the nonrigid isom-
etry along the configuration manifold. We note that the
nonrigid isometries of parallelogram-based origami still
require the development of an experimental apparatus
for their quantitative validation.

The theory developed in the present work connects
the discrete representation to the continuum represen-
tation of locally uniform isometric deformations in TBO,
thereby characterizing their low-energy kinematics at the
large scale. It remains to test this theory with more
general trapezoid crease patterns via analytical or nu-
merical calculations. However, the underlying principles
extend to quadrilateral-mesh origami sheets without par-
allel edges, where the breathing mode and the shearing
mode are coupled along the configuration manifold, as
well as axisymmetric origami such as those in Refs. [42—
44], where the size of the faces changes between cells so
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FIG. 4. Fabricated Miura-derivative trapezoid-based origami. (A) Fabricated tessellation with primitive lattice vectors £; .
(B) Primitive cell vertices labeled a, b, ¢, and d and faces labeled A, B, C, and D. (C) Sector angles labeled o and o' =7 — «
and dihedral angles labeled v, v, and " = 27 — 1. (D) Compatibility diagram with amplitudes V¢, VY, Ve, and V¢ on the
corresponding vertices and colors indicating the coupling coefficients (/q, —¢/s, and +¢£/p. (E) Edge lengths labeled p, g, and
s. (F) View of folded specimen with height h, exterior radius R., and interior radius R; with the mountain valley assignment
of the folded creases indicated. (G) Radius as a function of height comparing experimental measurements with theoretical
predictions. Black dashed line indicates flattened state. (H) Excitation of the non-rigid isometry. Scale bar is 30 mm in both
panels (F) and (H).

a4 that the continuum theory may adopt a conformally flat s lated via the Gauss-Codazzi equations in the continuum
sss metric. Furthermore, our methods extend to spatially- s regime [48].

w6 varying isometries, such as those explored linearly for : In addition to characterizing the kinematics, quanti-
ss7 parallelogram-based origami [45, 46] (see Supplemental s fying the stiffness of the breathing and shearing modes
sss Appendix, Bloch-periodic Isometries) and nonlinearly for s is important for the application of our theory towards
w0 the cylindrical waterbomb origami [47], where the fun- s origami engineering. Such modal stiffness is frequently
w0 damental forms and their derivatives are intimately re- .7 modeled via a truss model with Hookean potentials
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FIG. 5. Rigid folding experiments of Miura-derivative trapezoid-based origami of the corresponding measurements shown in
Fig. 4G with height h, inner radius R;, and exterior radius Re. The numbers correspond to those marked in Fig. 4(G)

for the folding, bending, and stretching of the pan-
els [46, 49, 50]. In contrast to our theory, such truss
models utilize virtual creases across the diagonals of the
panels to quantify panel bending. Since our theory at-
tempts to directly model the deflection field of the panels
instead, it may be possible to equate the stiffness asso-
ciated with the vertex amplitudes and the face ampli-
tudes with scaling relations based on the dimensions of
the panels and the elastic moduli of the constituent ma-
terial. This could be especially valuable for the design of
impact mitigating origami crash-boxes that utilize trape-
zoidal faces [51].

METHODS

480

481 Coarse-Graining

We coarse-grain the ground states of a periodic origami
a3 tessellation by averaging its primitive lattice vectors over
aes all admissible primitive unit cells to determine the coarse-
a5 grained tangent vectors of the tessellation. We do this in
two steps. First, we average the lattice vectors over the
copies of a standard umit cell that change which vertex
is located at the origin and denote the result £,. For
example, one copy has vertex a at the origin with lattice
vectors pointing between vertex a in adjacent cells and
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532

another copy has vertex b at the origin with lattice vec-
tors pointing between vertex b in adjacent cells. Second,
we average these copies between adjacent cells so that
the forwards and backwards tangent vectors are equal
and opposite. This yields our definition for the coarse-
grained tangent vectors:

(1+8S71e,. (11)

N |

t, =

Additionally, we average the cell-to-cell change in the
primitive lattice vectors over all admissible primitive unit
cells to determine the change in the coarse-grained tan-
gent vectors. We do this by averaging over the change
in the tangent vector defined in Eqn. (11) from an initial
cell to the subsequent cell and from the previous cell to
the initial cell so that the forwards and backwards deriva-
tives of the tangent vectors are equal and opposite. Since
the change in the tangent vectors is given by the action of
the lattice rotation matrix or its inverse, this yields our
definition for the derivative of the coarse-grained tangent
vectors:

(12)

These partial derivatives satisfy d,t, = 0,t,. The in-
dices of Eqns. (11, 12) remain the cell indices (nq,ns).
We transform to the continuous surface coordinates (é; =
@, é = z) via the Jacobian J,, = 0é,/0n,. For the
trapezoid-based origami crease patterns we consider, we
have J,1 = 1/sinn, J.o = 1/h, and J,o = J.1 = 0, where
7 is the lattice rotation angle and h is the magnitude of
the second lattice vector.

We similarly coarse-grain the infinitesimal deformation
of the periodic origami tessellation generated from a ho-
mogeneous isometry by averaging the corresponding lat-
tice displacement (A,) and lattice angular velocity (L,,)
over all primitive unit cells. We again do this in two
steps. First, we average the lattice displacement and lat-
tice angular velocity over the same set of standard unit
cells used to compute ZN above. Here, there are an addi-
tional four copies of each standard cell distinguished by
the orientation of the frame for each of the four corners
that meet at the vertex set at the origin. We denote the
results A, and L. Second, we expand Eqns. (11, 12) in
terms of these quantities:

1 _ _ T
ot, = 5((1+Su1)Aﬂ_Su1L#£“’ (13)

1

80t = 5

((S,, — S, Hot, + (LS, + S;IEV)ZM).
(14)
Again, the partial derivatives satisfy 69,t, = d0,t, and

we transform from the discrete cell indices to the con-
tinuous surface coordinates via the Jacobian. While
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we do not compute an embedding directly, this proce-
dure is sufficient to compute the fundamental forms and
characterize the geometry of the origami tessellations.
These methods extend to the crease patterns shown in
Figs. 1(C,D) that are not periodic in the azimuthal direc-
tion but are still composed of cellular building blocks by
performing the first step of our averaging between anal-
ogous, but nonequivalent, vertices in both the forward
and backwards directions.

Linear Isometry Model

We model the linear isometries via the angular velocity
field, denoted w, which generates the infinitesimal rota-
tion of elements of the sheet. We parameterize this angu-
lar velocity field via amplitudes on the vertices, denoted
V4, and amplitudes on the faces, denoted F4, where we
use lowercase (uppercase) Latin superscripts to label the
vertex (face) within the primitive unit cell that the am-
plitude is assigned to. The meaning of the amplitudes is
as follows. The difference in the angular velocity between
the corners of two faces that meet at vertex a and share
the i edge of the vertex is:

Aw = (71)iva zqv
G

(15)
= i X Piyg  Tiys, (16)
with ¢ defined cyclically on the four edges emanating from
vertex a and 7{ the corresponding edge direction. We re-
fer to the triple products ¢ as the triple products, which
we can write explicitly as functions of the sector and di-
hedral angles. This local solution ensures that the net
rotation around the vertex vanishes to first order in the
angular velocity. Similarly, the difference in the angular
velocity between the corners of face A that share the i*®
edge of the face is:

Aw = (-1)"FAN, (17)
VA = v ,|, parallel edges, (18)
‘ |r#|, non-parallel edges

with 4 defined cyclically on the four edges bounding face
A and |rf‘| the corresponding edge length. This local
solution ensures that the net rotation and displacement
around the face vanishes to first order in the angular
velocity.

We compute the net change in the orientation between
any two corners of the origami tessellation by choosing
a path composed of corner-to-corner segments and sum-
ming over the amplitude-dependent contributions to the
angular velocity from Equs. (15, 17). Similarly, we com-
pute the net change in the position between any two cor-
ners by computing the change in the orientation between
the starting corner and each corner along the path, then



s summing each of their cross products with the subse-
sr7 quent corner-to-corner segment along the path. The am-
s plitudes are constrained such that the total change in
s the angular velocity on a loop around any edge vanishes.
s 'These conditions ensure that both the net rotation and
se1 net displacement over any closed loop of the tessellation
se2 vanishes, and consequently that none of the elements of
se3 the sheet stretch to first order in the angular velocity. We
ssa provide a detailed derivation in Supplemental Appendix,
sss Linear Isometry Compatibility Conditions.

Morph-derivative Trapezoid-based Origami
Geometry

586
587

We write the vertex basis vectors and the primitive
lattice vectors for the family of Morph-derivative TBO
with vertex a at the origin of the primitive unit cell as:

588

589

590

:(0 0, O)
= (. 0. 0). (19)
:(s + gcosa, qsmoacosg7 qsinozsing)
(qcosa qsmacosg7 qsmasmg)
& = (p+sgcosy, sgsin, 0),
(20)

Y 7(0 0 2qsmasinﬂsin'y)
2 — ) ) — .

in 2
Sln2

so For all unit cells that appear in the averaging process,
se2 the lattice rotation angle is:

n=2(r—9), (21)
s3 where we parameterize the dihedral angles entering
soe Equs. (19, 20, 21) through standard application of spher-
sos ical geometry [52]:

cos B —cosacosd sinBsiny
= 2arctan - - - ,
sin o sin § sin &

cosa — cos fcosd sinasin 'y) (22)

1 = 2arctan (

sin 8sin 0 sin §

0 = arccos(cos a cos  + sin asin 5 cos ).

596 Fabrication and Testing

We fabricate the Miura-derivative TBO by milling a 1
mm thick black polypropylene sheet using a 3-axis CNC
milling machine (Roland EGX-600, accuracy 10 um),
as illustrated in Fig. 6(A) and previously achieved in
Refs [41, 53]. We form the mountain/valley creases by
ez engraving 0.9 mm into the polypropylene sheet using a
3 ball-end tool with a radius of 1 mm. To facilitate un-
ea constrained folding, we add 2 mm diameter holes to each
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vertex of the tessellation. This measure is crucial for pre-
venting stress concentration where multiple creases con-
verge, taking into account the non-zero thickness of the
actual sample. Finally, since the Miura-derivative TBO
is developable, we manually fold the milled/engraved
polypropylene sheet.
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We measure the height-radius profile along the non-
linear rigid isometry of the fabricated Miura-derivative
TBO wusing the experimental setup illustrated in
Fig. 6(B,C). The setup consists of a linear slide system
equipped with several sliders connected to an optical ta-
ble and is arranged horizontally to mitigate gravitational
effects. We connect the sample to a linear slide system
via three sliders: one in the middle and the other two at
its ends. Each slider is equipped with a locking system to
maintain the sample at a fixed height. We affix PMMA
spacers to the sliders using 2 mm diameter bolts, as illus-
trated in Fig. 6(B), to ensure secure connection between
the sample and the sliders. Additionally, we connect two
L-shaped plates to extra sliders to induce the rigid fold-
ing of the tessellation and establish the desired height
for the sample. We design these plates to apply com-
pression and tension to the sample, thereby facilitating
both folding and unfolding.

611

61.

o

613

61

i

61!

o

616

617

61

©

61!

©

621

1S}

62

=

62

N}

62

@

62:

i

625

626

62

X

62i

@

e  We integrate two rulers into the setup: one to verify
the imposed height of the sample and the other as a ref-
erence scale bar for post-processing analysis of captured
photos. We position two cameras, oriented orthogonal
to one another, to capture images of the sample as we
induce the rigid folding motion. We position the first
camera (Sony Alpha 9) in front of the sample to cap-
ture the frontal view, thereby facilitating the estimation
of the radius. This camera is equipped with a telephoto
G Master FE 100-400 mm lens to minimize distortion
and enhance contrast between the foreground and the
background. We position the second camera (Sony Al-
pha 6300) to the side of the sample to capture the lateral
view, thereby facilitating the estimation of the height.
This camera is equipped with a Vario-Tessar T* FE 24-
70 mm lens.
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es  The experiments proceeded as follows. A specific
height is imposed on the sample using the L-shaped
plates and the sample is secured in this configuration
by locking the sliders with the locking system. We use a
tape measure at various positions along the circular edge
of the tessellation to manually verify the uniformity of
the sample height. We then capture a photo with each of
the two cameras in the locked configuration. We repeat
this process for eight different configurations, specifically
imposing heights of 31.5 cm, 32 cm, 33 cm, 34 cm, 35
65 cm, 36 cm, 37 cm, and 37.5 cm. Finally, we estimate
ess the relationship between the height and radius via post-
es7 processing of these photos.
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FIG. 6. (A) Manufacturing of trapezoid-based origami by a CNC milling machine. (B) Setup designed to perform the nonlinear
rigid isometry experiments on the trapezoid-based origami. (C) Details of the setup showing the linear slide system used to
change the configuration of the specimen during the experiments. The sample is constrained through multiple sliders inserted

into a rail.
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