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Investigations of origami tessellations as effective media reveal the ability to program the compo-
nents of their elasticity tensor. However, existing efforts focus on crease patterns that are composed
of parallelogram faces where the parallel lines constrain the quasi-static elastic response. In this
work, crease patterns composed of more general trapezoid faces are considered and their low-energy
linear response is explored. Deformations of such origami tessellations are modeled as linear isome-
tries that do not stretch individual panels at the small scale yet map to non-isometric changes of
coarse-grained fundamental forms that quantify how the effective medium strains and curves at
the large scale. Two distinct mode shapes, a rigid breathing mode and a nonrigid shearing mode,
are identified in the continuum model. A specific example, called Morph-derivative trapezoid-based
origami, is presented with analytical expressions for its deformations in both the discrete and contin-
uous models. A developable specimen is fabricated and tested to validate the analytical predictions.
This work advances the continuum modeling of origami tessellations as effective media with the
incorporation of more generic faces and ground states, thereby enabling the investigation of novel
designs and applications.

INTRODUCTION13

Origami sheets are two-dimensional surfaces with pre-14

defined creases that control their three-dimensional re-15

sponse to mechanical loads [1–4]. The fundamental prin-16

ciple behind the behavior of origami is the difference be-17

tween the energy scales of elastic deformations that bend18

the panels (cubic in sheet thickness) and elastic deforma-19

tions that stretch the panels (linear in sheet thickness).20

This scaling leads to a quasi-static, low-energy response21

dominated by the deformations that do not stretch the22

panels, which we refer to as linear isometries. Since23

this principle relies solely on the thickness of the sheet,24

the linear isometries corresponding to a particular crease25

pattern are largely material independent and therefore26

realizable in both metallic [5–9] and polymeric [10–12]27

materials over a range of length scales. Hence, an un-28

derstanding of the origami kinematics tends to be more29

consequential than an understanding of the origami dy-30

namics for the design of origami metamaterials. There31

are two specific applications of origami kinematics that32

motivate our work.33

The first application of interest is the class of isome-34

tries referred to as rigid folding mechanisms that fold35
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the origami sheet along its predefined creases while keep-36

ing the panels entirely rigid (no stretching or bending).37

These rigid folding mechanisms are useful for the deploy-38

ment and transformation of structures found in various39

engineering applications including solar arrays [13, 14],40

heart stents [15], and temporary shelters [16]. How-41

ever, arbitrary quadrilateral-mesh crease patterns are not42

rigidly foldable and a significant body of work is de-43

voted towards the development of design principles [17–44

22]. Moreover, arbitrary loads can lead to heterogeneous45

actuation of the mechanism [23, 24] as well as undesirable46

deformations due to the existence of isometries distinct47

from the rigid folding mechanism [25] or the intersec-48

tion of separate branches in the configuration space [26].49

Therefore, efficient models for the response to external50

loads can inform the methods for deployment and trans-51

formation of origami structures along the programmed52

rigid mechanism without exciting undesirable responses53

via alternative low-energy instabilities.54

The second application of interest is the continuum ap-55

proximation (i.e., homogenization or coarse-graining) of56

linear isometries in periodic origami tessellations. Such57

approximations are valuable for both surface fitting [27]58

and effective elasticity models [28–30], where deforma-59

tions that do not stretch the individual panels generate60

apparently non-isometric deformations at the large scale.61

The main example in the existing literature is the class of62
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parallelogram-based origami sheets, such as the Miura-63

ori crease pattern [31, 32]. An origami tessellation in64

this class is quasi-planar, in that its two primitive lat-65

tice vectors always lie in the same two-dimensional plane,66

and exhibits one rigid folding mechanism that changes its67

lattice vectors. Simultaneously, such a tessellation also68

exhibits two nonrigid linear isometries that bend the pan-69

els in addition to folding the creases. Approximating the70

origami tessellation as a continuous sheet reveals that the71

rigid isometry generates in-plane strain, the first non-72

rigid isometry generates out-of-plane curvature, and the73

second nonrigid isometry generates out-of-plane twist-74

ing [31–36]. These three modes function as a basis for75

more general low-energy deformations in effect contin-76

uum models [29, 30]. Moreover, analytical calculations77

show the crease geometry necessarily pairs a hydrostatic78

(dilation) strain mode with an anticlastic (saddle) cur-79

vature mode and a deviatoric (pure shear) strain mode80

with a synclastic (dome) curvature mode [31–36].81

Our work seeks to expand the investigation of82

parallelogram-based origami sheets to more generic tes-83

sellations which possess two crucial differences from those84

composed of parallelograms [37, 38]. The first differ-85

ence is that a generic tessellation is quasi-cylindrical,86

rather than quasi-planar, in that its two primitive lat-87

tice vectors rotate about a common axis from cell to cell.88

The second difference is that such a quasi-cylindrical tes-89

sellation exhibits two linear isometries (rather than the90

one rigid and two non-rigid isometries discussed in the91

previous paragraph) that retain the quasi-cylindrical ge-92

ometry while changing its radius, height, and symme-93

try axis. We investigate these two linear isometries in94

rigidly-foldable trapezoid-based origami (TBO) tessella-95

tions, for which the constituent trapezoid faces have one96

less symmetry than the previously investigated parallel-97

ogram faces, to exemplify continuum approximations for98

the linear isometries in quasi-cylindrical origami tessel-99

lations. We show exemplar TBO folded from cardstock100

in their ground state configurations in Figs. 1(A-D)(i)101

and in rigidly folded configurations in Figs. 1(A-D)(ii).102

While such rigid folding mechanisms of TBO are identi-103

fied for select geometries, such as the arc pattern, in pre-104

vious works [39, 40], our work also identifies and models105

the nonrigid isometries shown in Figs. 1(A-D)(iii). Our106

theoretical model has two components. The first com-107

ponent determines and solves the compatibility condi-108

tions for the linear isometries within a single cell, which109

we show can be represented using the compatibility di-110

agrams shown in Figs. 1(A-D)(iv) where the meaning of111

the line styles and colors is explained in Supplemental112

Appendix, TBO Examples. The second component maps113

these linear isometries to their continuum approximation,114

which decomposes into one rigid breathing mode and one115

nonrigid shearing mode. We showcase our analytical re-116

sults for a class of origami crease patterns derived from117

the geometry presented in Ref. [34] that we refer to as the118

Morph-derivative TBO and perform laboratory scale ex-119

periments on a specimen manufactured from polypropy-120

lene.121

RESULTS122

Periodic origami tessellations with generic faces adopt123

quasi-cylindrical ground states generated by the two124

primitive lattice vectors (ℓ1,2) and the two primitive lat-125

tice rotation matrices (S1,2) (see Fig. 2A). As shown in126

Refs. [37, 38], the lattice rotations share a common axis127

(Ŝ) about which local frames are rotated by the respec-128

tive lattice rotation angle (η1,2) (see Supplemental Ap-129

pendix, Lattice Compatibility for further details). Fur-130

thermore, the lattice vector components orthogonal to131

Ŝ define a unique radius of curvature (R). Thus, we132

coarse-grain the lattice-scale geometry by taking the dis-133

crete cell indices (n1, n2) to the continuous surface co-134

ordinates (ϕ, z) (see Methods, Coarse-Graining) and ap-135

proximate the cylindrical ground state via the embedding136

X(ϕ, z) = R cosϕx̂+R sinϕŷ+zẑ. From the embedding,137

we compute the tangent vectors tµ ≡ ∂µX (using sub-138

scripts µ, ν to denote the surface coordinates) and the139

normal vector n̂ ≡ tϕ× tz/|tϕ× tz| to construct the first140

fundamental form Iµν ≡ tµ · tν , the second fundamental141

form IIµν ≡ n̂ · ∂µtν , and the shape operator S ≡ III
−1:142

I =

(

R2 0
0 1

)

,

II =

(

−R 0
0 0

)

,

S =

(

− 1

R
0

0 0

)

.

(1)

The shape operator has eigenvalues equal to the princi-143

pal curvatures (κ1 = −1/R, κ2 = 0), eigenvectors equal144

to the principal directions
(

v̂1 = (1, 0), v̂2 = (0, 1)
)

, de-145

terminant equal to the Gaussian curvature (K = 0), and146

trace equal to twice the mean curvature
(

2H = −1/R
)

.147

As shown in Refs. [37, 38], at the lattice-scale, these148

origami sheets generically exhibit two linear isometries149

under periodic boundary conditions which change the150

lattice vectors (ℓ1,2 → ℓ1,2 + ∆1,2) and the lattice ro-151

tation matrices (S1,2 → (1 + L1,2)S1,2), thereby induc-152

ing changes in the radius (R → R + δR) and the rota-153

tion axis (Ŝ → Ŝ + δŜ) while preserving the cylindri-154

cal character to first order (see Supplemental Appendix,155

Lattice Compatibility). We write the generic deforma-156

tion X → X + δX in terms of the vector field δX =157

δXn(cosϕx̂ + sinϕŷ) + δXϕ(− sinϕx̂ + cosϕŷ) + δXz ẑ158

and determine the changes in the radial direction (δXn),159

the azimuthal direction (δXϕ), and the axial direction160

(δXz) that are mutually consistent with cylindrical defor-161

mations below (see Supplemental Appendix, Continuum162

Deformations).163

Since cylinders have zero Gaussian curvature, the de-164

formation must satisfy δK = 0. The in-plane strain165
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FIG. 1. Examples of trapezoid-based origami folded from cardstock (i) quasi-cylindrical ground states, (ii) rigid folding
cylindrical isometry (iii) non-rigid shear isometry, and (iv) diagramatic representation of compatibility conditions with line
styles signifying the coupling between amplitudes on the adjoined vertices and triangles indicating periodic directions (see
Supplemental Appendix, Example TBO for more details). (A) Cylindrical geometry from Miura-derivative. (B) Extension of
the pattern in panel A exhibiting a locked configuration. (C) Archimedean spiral from a graded Miura-derivative pattern. (D)
Lemniscate of Bernoulli from a graded Miura-derivative with a parallelogram interface.
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FIG. 2. Coarse-grained geometry. (A) Angled view of a quasi-
cylindrical trapezoid-based origami tessellation with lattice
vectors ℓ1,2, lattice rotation axis Ŝ, and characteristic height
h. (B) Top-down view of the tessellation shown in panel A
with lattice rotation angle η1, radius R, and azimuthal surface
coordinate ϕ. Continuum illustration of the (C) breathing
mode and (D) shearing mode induced by the linear isometries
of the tessellation shown in panel A.

along the azimuthal and axial directions take arbi-166

trary, but spatially constant, values (δIϕϕ = εϕϕ and167

δIzz = εzz) because they are unconstrained by the cylin-168

drical character of the deformation. Lastly, we con-169

sider a generic deformation as a linear combination of170

a breathing mode that changes the first principal cur-171

vature (δκ1 = −δR/R2) without changing the principal172

directions
(

δv̂1 = (0, 0), δv̂2 = (0, 0)
)

and a shearing173

mode that changes the principal directions
(

δv̂1 = (0, σ1),174

δv̂2 = (σ2, 0)
)

without changing the first principal cur-175

vature (δκ1 = 0). Such modes are the only two homo-176

geneous deformations that maintain the cylindrical char-177

acter (see Supplemental Appendix, Continuum Deforma-178

tions). Here, εϕϕ, εzz, δR, σ1, and σ2 all depend implic-179

itly on the geometry of the underlying crease pattern,180

and this relationship constitutes the basis of the origami181

sheets as mechanical metamaterials. We find that the182

breathing mode (illustrated in Fig. 2C) is quantified by183

δXn = δR, δXϕ =
(

εϕϕ/(2R)−δR
)

ϕ, and δXz = εzzz/2.184

The corresponding changes to the fundamental forms are185

written:186

δI =

(

εϕϕ 0
0 εzz

)

,

δII =

(

δR−
εϕϕ

R
0

0 0

)

,

δS =

(

δR
R2 0
0 0

)

.

(2)

We find that the shearing mode (illustrated in Fig. 2D)187

is quantified by δXn = 0, δXϕ = εϕϕϕ/(2R)+σ1Rz, and188

δXz = εzzz/2 + σ2ϕ. The corresponding changes to the189

fundamental forms are written:190

δI =

(

εϕϕ R2σ1 + σ2
R2σ1 + σ2 εzz

)

,

δII = −

( εϕϕ

R
Rσ1

Rσ1 0

)

,

δS =
1

R

(

0 σ2
−σ1 0

)

,

(3)

Our work focuses on applying the above analysis to the191

particular case of rigidly foldable TBO, including all of192

the crease patterns shown in Figs. 1(A-D)(i) and, more193

generically, crease patterns for which the parallel edges194

of the trapezoidal faces ensure ℓ1 ⊥ Ŝ and ℓ2 ∥ Ŝ along195

the rigid folding configuration manifold. For the crease196

pattern in Fig. 1(A)(i), the orientation of the lattice vec-197

tors is because the subsequent parallel edges rotate the198

faces by complementary dihedral angles so that there is199

no net rotation, similar to the reason a parallelogram-200

based origami sheet stays planar. However, for the201

crease pattern in Fig. 1(B), the dihedral angles are not202

complementary but still sum to 2π. The consequence203

is that the rigid folding mechanism
(

demonstrated in204

Figs. 1(A-D)(ii)
)

is characterized by the breathing mode205

of Eqn. (2), and, by process of elimination, the remaining206

isometry
(

demonstrated in Figs. 1(A-D)(iii)
)

is charac-207

terized by the shearing mode of Eqn. (3). Interestingly,208

the crease patterns shown in Figs. 1(C,D) exhibit similar209

behavior despite have spatially varying crease patterns,210

and hence spatially varying radii, that only repeat along211

the rotation axis.212

We provide more clarity on these modes by developing213

unit cell compatibility conditions for the class of TBO214

with parallel edges that alternate in length. Rather than215

triangulating the crease pattern as frequently done in216

previous works [31–35], we separately consider folding217

degrees of freedom on the vertices, denoted by the ver-218

tex amplitudes V, and bending degrees of freedom on219

the faces, denoted by the face amplitudes F (see Meth-220

ods, Linear Isometry Model) as introduced in Ref. [36]221

for the special case of parallelogram-based origami. The222

amplitude on a vertex maps to changes in the dihedral223

angles, which are not required to be uniform along the224

edge unless the isometry is rigid. Instead, a gradient225
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in the folding along a crease generates bending of the226

adjacent faces, as quantified by the respective face am-227

plitudes. For this reason, constraints on the face am-228

plitudes can be integrated out, thereby yielding compat-229

ibility conditions that map from vertex amplitudes to230

vertex constraints which we illustrate via the compati-231

bility diagrams shown in Figs. 1(A-D)(iv). Here, each232

node is assigned a vertex amplitude and the line style of233

the edges indicate coupling coefficients that depend on234

the crease geometry (see Supplemental Appendix, TBO235

Examples). When the coupling coefficients are uniform236

along the edges, such as in Fig. 1(A)(iv), the rigid mode237

(F = 0 for all faces) is represented by uniform assignment238

of vertex amplitudes (V = 1 for all vertices). In contrast,239

when the coupling coefficients are nonuniform along the240

edges, such as in Fig. 1(B)(iv), the vertex amplitudes of241

the rigid mode are proportional to one another to ensure242

the folding is uniform along the creases. In either case, we243

find that this family of TBO always exhibits a nonrigid244

mode represented by uniform face amplitudes (F = 1 for245

all faces) and zero vertex amplitudes (V = 0 for all ver-246

tices). Since the breathing (shearing) mode is generated247

by the rigid (nonrigid) isometry, its modal stiffness de-248

pends entirely on the stiffness of the creases (faces). This249

representation of the isometries effectively integrates the250

three-dimensional geometry out of the analysis to enable251

a succinct analytical classification of the modes.252

Analysis of Morph-derivative Trapezoid-based253

Origami254

We consider the family of Morph-derivative TBO, such255

as the example shown in Fig. 3(A). Similar to the fam-256

ily of Morph parallelogram-based origami introduced in257

Ref. [34], the unit cell of these periodic crease patterns is258

constructed from copies of a base vertex that is param-259

eterized by the two independently chosen sector angles260

α and β. The three remaining vertices of the cell have261

identical or supplementary (α′ ≡ π−α, β′ ≡ π−β) sector262

angles and the distinction in the present work is that the263

vertices are arranged to form trapezoid faces rather than264

parallelograms. We exclusively consider isosceles trape-265

zoids to simplify analytic expressions, but our model ap-266

plies to tessellations composed of more general trapezoids267

and with larger unit cells. Thus, each of the trapezoids268

has two legs of length q, one base of length p, and one269

base of either sα ≡ p − 2q cosα or sβ ≡ p + 2q cosβ
(

270

see Fig. 3(B)
)

. This yields the three-dimensional design271

space (α, β, q/p) for Morph-derivative TBO, where the272

magnitude of p dictates the scale of the system which273

has no role in our kinematic analysis.274

Such a crease pattern has a a rigid folding mecha-275

nism that we parameterize via the dihedral angle γ from276

which the remaining dihedral angles shown in Fig. 3(C)277

(θ, θ′′ ≡ 2π−θ, ψ, and ψ′′ ≡ 2π−ψ) are determined. The278

configuration manifold for a geometry withN1 cells in the279

azimuthal direction is bounded by the closure condition280

of the faces γ = π shown in Fig. 3(F) and the closure con-281

dition of the cylinder ηN1 = 2π shown in Fig. 3(H). We282

find these conditions restrict the space of viable configu-283

rations and system sizes, but we do not provide a thor-284

ough exploration of the design space in this work. We285

write the explicit expressions for the geometry along the286

rigid folding mechanism in Methods, Morph-derivative287

TBO Geometry. We compute the coarse-grained funda-288

mental forms for a generic ground state then we use the289

mean curvature to determine the radius and the Jacobian290

to determine the characteristic height:291

R =
1

4

(

p+ sβ + (p+ sα) cos
η

2

)

csc
η

2
, (4)

h = 2q sinα sinβ sin γ csc
η

2
. (5)

We find the components of the fundamental forms exactly292

match those shown in Eqn. (1). We show the radius as293

a function of the height along the configuration manifold294

in Fig. 3(E), and use the inset to highlight a change in295

slope after the cylinder reaches its maximum height as296

shown in Fig. 3(G). Since we have explicit formulae for297

the radius and the height, it is straightforward to expand298

the fundamental forms about infinitesimal changes to the299

dihedral angle γ along the rigid mechanism (see Supple-300

mental Appendix, Morph-derivative Isometries). How-301

ever, we utilize our framework for the rigid isometry to302

compare it with existing methods.303

We first construct the compatibility diagram shown304

in Fig. 3(D) to determine the amplitude representation305

for the rigid isometry. Since there are three unique di-306

hedral angles, we define the three folding coefficients307

ζ ≡ sinα sinβ sin γ, ξ ≡ sinα2 sin θ, and χ ≡ sinβ2 sinψ308

to quantify the respective changes in the dihedral an-309

gles δγ, −δψ, and −δθ. We see each edge of the dia-310

gram has a single color, and therefore conclude the rigid311

isometry of the mode is represented by the vertex ampli-312

tudes Va = Vb = Vc = Vd = 1 and the face amplitudes313

FA = FB = FC = FD = 0. We integrate the changes314

in the lattice vectors and the lattice rotation matrices,315

then average according to our coarse-graining procedure316

to find:317

δR =
ζ2

4

(

p+ sα + (p+ sβ) cos
η

2

)

csc3
η

2
, (6)

εϕϕ = ζ2 csc ηR
(

4R sin
η

4
+ (p+ sα) cos

η

2

)

, (7)

εzz = 2 sinα sinβ cos
θ

2
cos

ψ

2
, (8)

where we determine εϕϕ and εzz directly from δIϕϕ and318

δIzz, respectively. These results are self-consistent with319

the continuum model which equates δIIϕϕ = δR−εϕϕ/R320

and δSϕϕ = δR/R2, and we obtain them using a321

slight adjustment to the averaging step of our coarse-322

graining procedure (see Supplemental Appendix, Morph-323

derivative Isometries). However, the Jacobian relating324
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FIG. 3. Morph-derivative trapezoid-based origami. (A) Perspective view of an example configuration with N1 = 4 cells in the
azimuthal direction and N2 = 4 cells in the axial direction. (B) Primitive cell with vertices labeled a, b, c, and d, faces labeled
A, B, C, and D, and edge lengths labeled p = 1, q = 0.7, sα, and sβ . (C) Sector angles labeled α = 1.1, α′

≡ π − α, β = 2.1,
β′

≡ π−β and dihedral angles labeled γ, ψ, ψ′′
≡ 2π−ψ, and θ, θ′′ ≡ 2π−θ. (D) Compatibility diagram for vertex amplitudes

with edges representing the coupling coefficients based on the folding coefficients ζ, ξ, and χ. (E) Nonlinear evolution of the
height and radius of the crease pattern shown in panel A along the rigid folding mode, with the flat folded state shown in
panel F, maximal height state shown in panel G, and closed state shown in panel H. (F-H) Front and top-down views of states
labeled in panels E, I. (I) Linear response along the configuration manifold as a function of the dihedral angle, γ, quantified by
the pitch p induced by the non-rigid mode and the ratio dh/dR of the rigid mode.

the discrete lattice coordinates to the continuous surface325

coordinates plays an important role here: the terms en-326

tering the fundamental forms in Eqn. (2) are not given327

by the partial derivative of those in Eqn. (1) with respect328

to the dihedral angle that functions as the configuration329

parameter. Instead, the strains arise from the deriva-330

tives of the Jacobian which highlights the way the lattice331

geometry gives rise to the effective behavior of the mate-332

rial. The axial strain εzz maps to changes in the height333

δh = hεzz/2 of the cylinder whereas the azimuthal strain334

εϕϕ opens or closes the cylinder without changing its cur-335

vature, which instead are characterized by δR. We con-336

sider the ratio δh/δR analogously to the Poisson’s ratio337

but instead characterizing the relative amount of axial338

stretching and radial dilation. We see from our expres-339

sions in Eqns. (6, 8) that when one of the dihedral angles340

(ψ or θ) changes its mountain/valley assignment this ra-341

tio changes signs, which is the same observation made for342

the Poisson’s ratio in parallelogram-based origami. This343

further illustrates the functionality of Morph-derivative344

TBO as a transformable mechanical metamaterial.345

We repeat this analysis for the nonrigid isometry which346

we cannot describe in terms of changes to the dihedral347

angles exclusively. Since this crease pattern falls within348
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the broader set of TBO that our theory applies to, the349

nonrigid isometry is represented by the vertex amplitudes350

Va = Vb = Vc = Vd = 0 and the face amplitudes FA =351

FB = FC = FD = 1. We again integrate the changes352

in the lattice vectors and the lattice rotation matrices,353

then average according to our coarse-graining procedure354

to find:355

σ1 = 1, (9)

σ2 = −R2 −
1

4
(p2 + sαsβ) tan

η

2
csc

η

2
, (10)

where we determine σ1 and σ2 directly from Szϕ = σ1/R356

and Sϕz = σ2/R and find that the diagonal compo-357

nents of the strain vanish: εϕϕ = εzz = 0. We confirm358

these quantities are self consistent with δIϕz = δIzϕ =359

R2σ1 + σ2, δIIϕz = δIIzϕ = Rσ1 without any adjust-360

ment to the averaging step of our coarse-graining pro-361

cedure. Here, there is an apparent discrepancy regard-362

ing the units of σ1 and σ2: from dimensional analysis363

of Eqn. (3), σ1 must have units of inverse area and σ2364

must be dimensionless. However, our calculations lead-365

ing to Eqns. (9, 10) use a dimensionless face amplitude to366

simplify our calculations while the integration framework367

assumes the face amplitude has units of inverse length.368

This is in contrast to the vertex amplitudes which are369

always dimensionless. Introducing such a length scale,370

for example from the square root of the cell area, re-371

solves the apparent discrepancy. The self consistency of372

our results relies on both the averaging process in our373

coarse-graining method and the inclusion of the Jacobian374

to transform from the discrete lattice coordinates to the375

continuous surface coordinates. While for the nonrigid376

isometries of parallelogram-based origami the averaging377

is also important, the Jacobian may be neglected because378

the ground states are quasi-periodic.379

Experiments of Miura-derivative Trapezoid-based380

Origami381

We fabricate and test an example Morph-derivative382

TBO crease pattern (see Methods, Fabrication and Test-383

ing). We select a developable pattern (β = π − α) so384

that we can construct the crease pattern from a mono-385

lithic sheet (see Fig. 4(A)) rather than the assembly of386

individual panels, such as done in Ref. [41]. For this rea-387

son, we refer to this family of crease patterns as Miura-388

derivative TBO, whereas it is called the arc pattern in389

previous work [39, 40]. Since the sector angles are not390

independently chosen, these crease patterns have a two-391

dimensional design space parameterized by (α, q/p) with392

the geometry indicated in Figs. 4(B,C,E) and the com-393

patibility diagram illustrated on the cell geometry in394

Fig. 4(D). After fabrication, the creases undergo plas-395

tic deformation and adopt the quasi-cylindrical ground396

state shown in Fig. 4(F); the tessellation tends to return397

to this particular configuration after any deformation.398

We perform a quantitative test of the nonlinear rigid399

isometry and a qualitative test of the linear nonrigid400

isometry. For the rigid isometry, we focus on the re-401

lationship between the height and radius then compare402

with our analytical theory. Rather than averaging over403

the vertices, which could lead to the accumulation of sys-404

tematic error, we measure the radii of the innermost (Ri)405

and outermost (Re) components of the cross section. We406

show the experimentally measured values and the ana-407

lytical predictions in Fig. 4(G), along with images of the408

exact configurations measured in Fig. 5. We see good409

agreement between the measurements and predictions410

until the tessellation becomes fairly flattened at configu-411

ration 8. We attribute this discrepancy, which becomes412

more pronounced as the tessellation flattens further, to413

systematic error arising from the large angle subtended414

by the radial measurement. For the nonrigid isometry, we415

focus on the general shape induced under loading condi-416

tions incompatible with the rigid mode. We show the417

response of the sample loaded and supported from op-418

posite corners in Fig. 4(H). We see the type of shearing419

mode that is consistent with the mode shape shown in420

Fig. 2(D) based on our analytical calculations.421

DISCUSSION422

Our work develops analytical expressions for the large-423

scale low-energy deformations of rigidly foldable TBO424

and demonstrates the validity of our theory through ex-425

periment. We identify TBO as an architecture for con-426

trol of shearing and breathing modes of surfaces through427

the geometry of the underlying crease pattern. Interest-428

ingly, we find the mountain/valley assignment controls429

the sign of the slope of the height-radius profile in the430

same way that the assignment controls the Poisson’s ratio431

of parallelogram-based origami [34]. These results show-432

case new functionality for origami as mechanical meta-433

materials. Further development is required for the exper-434

imental demonstration of isometries in non-developable435

TBO, as well as the quantitative validation of the rigid436

isometry near the flattened state and the nonrigid isom-437

etry along the configuration manifold. We note that the438

nonrigid isometries of parallelogram-based origami still439

require the development of an experimental apparatus440

for their quantitative validation.441

The theory developed in the present work connects442

the discrete representation to the continuum represen-443

tation of locally uniform isometric deformations in TBO,444

thereby characterizing their low-energy kinematics at the445

large scale. It remains to test this theory with more446

general trapezoid crease patterns via analytical or nu-447

merical calculations. However, the underlying principles448

extend to quadrilateral-mesh origami sheets without par-449

allel edges, where the breathing mode and the shearing450

mode are coupled along the configuration manifold, as451

well as axisymmetric origami such as those in Refs. [42–452

44], where the size of the faces changes between cells so453
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FIG. 4. Fabricated Miura-derivative trapezoid-based origami. (A) Fabricated tessellation with primitive lattice vectors ℓ1,2.
(B) Primitive cell vertices labeled a, b, c, and d and faces labeled A, B, C, and D. (C) Sector angles labeled α and α′

≡ π − α
and dihedral angles labeled γ, ψ, and ψ′′

≡ 2π − ψ. (D) Compatibility diagram with amplitudes V
a, Vb, Vc, and V

d on the
corresponding vertices and colors indicating the coupling coefficients ζ/q, −ξ/s, and +ξ/p. (E) Edge lengths labeled p, q, and
s. (F) View of folded specimen with height h, exterior radius Re, and interior radius Ri with the mountain valley assignment
of the folded creases indicated. (G) Radius as a function of height comparing experimental measurements with theoretical
predictions. Black dashed line indicates flattened state. (H) Excitation of the non-rigid isometry. Scale bar is 30 mm in both
panels (F) and (H).

that the continuum theory may adopt a conformally flat454

metric. Furthermore, our methods extend to spatially-455

varying isometries, such as those explored linearly for456

parallelogram-based origami [45, 46] (see Supplemental457

Appendix, Bloch-periodic Isometries) and nonlinearly for458

the cylindrical waterbomb origami [47], where the fun-459

damental forms and their derivatives are intimately re-460

lated via the Gauss-Codazzi equations in the continuum461

regime [48].462

In addition to characterizing the kinematics, quanti-463

fying the stiffness of the breathing and shearing modes464

is important for the application of our theory towards465

origami engineering. Such modal stiffness is frequently466

modeled via a truss model with Hookean potentials467
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FIG. 5. Rigid folding experiments of Miura-derivative trapezoid-based origami of the corresponding measurements shown in
Fig. 4G with height h, inner radius Ri, and exterior radius Re. The numbers correspond to those marked in Fig. 4(G)

for the folding, bending, and stretching of the pan-468

els [46, 49, 50]. In contrast to our theory, such truss469

models utilize virtual creases across the diagonals of the470

panels to quantify panel bending. Since our theory at-471

tempts to directly model the deflection field of the panels472

instead, it may be possible to equate the stiffness asso-473

ciated with the vertex amplitudes and the face ampli-474

tudes with scaling relations based on the dimensions of475

the panels and the elastic moduli of the constituent ma-476

terial. This could be especially valuable for the design of477

impact mitigating origami crash-boxes that utilize trape-478

zoidal faces [51].479

METHODS480

Coarse-Graining481

We coarse-grain the ground states of a periodic origami482

tessellation by averaging its primitive lattice vectors over483

all admissible primitive unit cells to determine the coarse-484

grained tangent vectors of the tessellation. We do this in485

two steps. First, we average the lattice vectors over the486

copies of a standard unit cell that change which vertex487

is located at the origin and denote the result ℓ̄µ. For488

example, one copy has vertex a at the origin with lattice489

vectors pointing between vertex a in adjacent cells and490
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another copy has vertex b at the origin with lattice vec-491

tors pointing between vertex b in adjacent cells. Second,492

we average these copies between adjacent cells so that493

the forwards and backwards tangent vectors are equal494

and opposite. This yields our definition for the coarse-495

grained tangent vectors:496

tµ ≡
1

2
(1+ S

−1)ℓ̄µ. (11)

Additionally, we average the cell-to-cell change in the497

primitive lattice vectors over all admissible primitive unit498

cells to determine the change in the coarse-grained tan-499

gent vectors. We do this by averaging over the change500

in the tangent vector defined in Eqn. (11) from an initial501

cell to the subsequent cell and from the previous cell to502

the initial cell so that the forwards and backwards deriva-503

tives of the tangent vectors are equal and opposite. Since504

the change in the tangent vectors is given by the action of505

the lattice rotation matrix or its inverse, this yields our506

definition for the derivative of the coarse-grained tangent507

vectors:508

∂µtν ≡
1

2
(Sν − S

−1
ν )tµ. (12)

These partial derivatives satisfy ∂µtν = ∂νtµ. The in-509

dices of Eqns. (11, 12) remain the cell indices (n1, n2).510

We transform to the continuous surface coordinates (ê1 =511

ϕ, ê2 = z) via the Jacobian Jµν = ∂êµ/∂nν . For the512

trapezoid-based origami crease patterns we consider, we513

have Jϕ1 = 1/ sin η, Jz2 = 1/h, and Jϕ2 = Jz1 = 0, where514

η is the lattice rotation angle and h is the magnitude of515

the second lattice vector.516

We similarly coarse-grain the infinitesimal deformation517

of the periodic origami tessellation generated from a ho-518

mogeneous isometry by averaging the corresponding lat-519

tice displacement (∆µ) and lattice angular velocity (Lµ)520

over all primitive unit cells. We again do this in two521

steps. First, we average the lattice displacement and lat-522

tice angular velocity over the same set of standard unit523

cells used to compute ℓ̄µ above. Here, there are an addi-524

tional four copies of each standard cell distinguished by525

the orientation of the frame for each of the four corners526

that meet at the vertex set at the origin. We denote the527

results ∆̄µ and L̄µ. Second, we expand Eqns. (11, 12) in528

terms of these quantities:529

δtµ =
1

2

(

(1+ S
−1
µ )∆̄µ − S

−1
µ L̄µℓ̄µ, (13)

δ∂µtν =
1

2

(

(Sν − S
−1
ν )δtµ + (L̄νSµ + S

−1
µ L̄ν)ℓ̄µ

)

.

(14)

Again, the partial derivatives satisfy δ∂µtν = δ∂νtµ and530

we transform from the discrete cell indices to the con-531

tinuous surface coordinates via the Jacobian. While532

we do not compute an embedding directly, this proce-533

dure is sufficient to compute the fundamental forms and534

characterize the geometry of the origami tessellations.535

These methods extend to the crease patterns shown in536

Figs. 1(C,D) that are not periodic in the azimuthal direc-537

tion but are still composed of cellular building blocks by538

performing the first step of our averaging between anal-539

ogous, but nonequivalent, vertices in both the forward540

and backwards directions.541

Linear Isometry Model542

We model the linear isometries via the angular velocity543

field, denoted ω, which generates the infinitesimal rota-544

tion of elements of the sheet. We parameterize this angu-545

lar velocity field via amplitudes on the vertices, denoted546

Va, and amplitudes on the faces, denoted FA, where we547

use lowercase (uppercase) Latin superscripts to label the548

vertex (face) within the primitive unit cell that the am-549

plitude is assigned to. The meaning of the amplitudes is550

as follows. The difference in the angular velocity between551

the corners of two faces that meet at vertex a and share552

the ith edge of the vertex is:553

∆ω = (−1)iVaζai , (15)

ζai ≡ r̂ai+1 × r̂ai+2 · r̂
a
i+3, (16)

with i defined cyclically on the four edges emanating from554

vertex a and r̂ai the corresponding edge direction. We re-555

fer to the triple products ζai as the triple products, which556

we can write explicitly as functions of the sector and di-557

hedral angles. This local solution ensures that the net558

rotation around the vertex vanishes to first order in the559

angular velocity. Similarly, the difference in the angular560

velocity between the corners of face A that share the ith561

edge of the face is:562

∆ω = (−1)iFAλAi , (17)

λAi ≡

{

|rAi+2|, parallel edges,

|rAi |, non-parallel edges
, (18)

with i defined cyclically on the four edges bounding face563

A and |rAi | the corresponding edge length. This local564

solution ensures that the net rotation and displacement565

around the face vanishes to first order in the angular566

velocity.567

We compute the net change in the orientation between568

any two corners of the origami tessellation by choosing569

a path composed of corner-to-corner segments and sum-570

ming over the amplitude-dependent contributions to the571

angular velocity from Eqns. (15, 17). Similarly, we com-572

pute the net change in the position between any two cor-573

ners by computing the change in the orientation between574

the starting corner and each corner along the path, then575
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summing each of their cross products with the subse-576

quent corner-to-corner segment along the path. The am-577

plitudes are constrained such that the total change in578

the angular velocity on a loop around any edge vanishes.579

These conditions ensure that both the net rotation and580

net displacement over any closed loop of the tessellation581

vanishes, and consequently that none of the elements of582

the sheet stretch to first order in the angular velocity. We583

provide a detailed derivation in Supplemental Appendix,584

Linear Isometry Compatibility Conditions.585

Morph-derivative Trapezoid-based Origami586

Geometry587

We write the vertex basis vectors and the primitive588

lattice vectors for the family of Morph-derivative TBO589

with vertex a at the origin of the primitive unit cell as:590

ra =
(

0, 0, 0
)

,

rb =
(

p, 0, 0
)

,

rc =
(

sα + q cosα, q sinα cos θ
2
, q sinα sin θ

2

)

,

rd =
(

q cosα, q sinα cos θ
2
, q sinα sin θ

2

)

,

(19)

ℓ1 =
(

p+ sβ cos
η
2
, sβ sin

η
2
, 0

)

,

ℓ2 =
(

0, 0, 2q sinα sin β sin γ
sin

η

2

)

.
(20)

For all unit cells that appear in the averaging process,591

the lattice rotation angle is:592

η = 2(π − δ), (21)

where we parameterize the dihedral angles entering593

Eqns. (19, 20, 21) through standard application of spher-594

ical geometry [52]:595

θ = 2arctan
(cosβ − cosα cos δ

sinα sin δ
,
sinβ sin γ

sin δ

)

,

ψ = 2arctan
(cosα− cosβ cos δ

sinβ sin δ
,
sinα sin γ

sin δ

)

,

δ ≡ arccos(cosα cosβ + sinα sinβ cos γ).

(22)

Fabrication and Testing596

We fabricate the Miura-derivative TBO by milling a 1597

mm thick black polypropylene sheet using a 3-axis CNC598

milling machine (Roland EGX-600, accuracy 10 µm),599

as illustrated in Fig. 6(A) and previously achieved in600

Refs [41, 53]. We form the mountain/valley creases by601

engraving 0.9 mm into the polypropylene sheet using a602

ball-end tool with a radius of 1 mm. To facilitate un-603

constrained folding, we add 2 mm diameter holes to each604

vertex of the tessellation. This measure is crucial for pre-605

venting stress concentration where multiple creases con-606

verge, taking into account the non-zero thickness of the607

actual sample. Finally, since the Miura-derivative TBO608

is developable, we manually fold the milled/engraved609

polypropylene sheet.610

We measure the height-radius profile along the non-611

linear rigid isometry of the fabricated Miura-derivative612

TBO using the experimental setup illustrated in613

Fig. 6(B,C). The setup consists of a linear slide system614

equipped with several sliders connected to an optical ta-615

ble and is arranged horizontally to mitigate gravitational616

effects. We connect the sample to a linear slide system617

via three sliders: one in the middle and the other two at618

its ends. Each slider is equipped with a locking system to619

maintain the sample at a fixed height. We affix PMMA620

spacers to the sliders using 2 mm diameter bolts, as illus-621

trated in Fig. 6(B), to ensure secure connection between622

the sample and the sliders. Additionally, we connect two623

L-shaped plates to extra sliders to induce the rigid fold-624

ing of the tessellation and establish the desired height625

for the sample. We design these plates to apply com-626

pression and tension to the sample, thereby facilitating627

both folding and unfolding.628

We integrate two rulers into the setup: one to verify629

the imposed height of the sample and the other as a ref-630

erence scale bar for post-processing analysis of captured631

photos. We position two cameras, oriented orthogonal632

to one another, to capture images of the sample as we633

induce the rigid folding motion. We position the first634

camera (Sony Alpha 9) in front of the sample to cap-635

ture the frontal view, thereby facilitating the estimation636

of the radius. This camera is equipped with a telephoto637

G Master FE 100-400 mm lens to minimize distortion638

and enhance contrast between the foreground and the639

background. We position the second camera (Sony Al-640

pha 6300) to the side of the sample to capture the lateral641

view, thereby facilitating the estimation of the height.642

This camera is equipped with a Vario-Tessar T* FE 24-643

70 mm lens.644

The experiments proceeded as follows. A specific645

height is imposed on the sample using the L-shaped646

plates and the sample is secured in this configuration647

by locking the sliders with the locking system. We use a648

tape measure at various positions along the circular edge649

of the tessellation to manually verify the uniformity of650

the sample height. We then capture a photo with each of651

the two cameras in the locked configuration. We repeat652

this process for eight different configurations, specifically653

imposing heights of 31.5 cm, 32 cm, 33 cm, 34 cm, 35654

cm, 36 cm, 37 cm, and 37.5 cm. Finally, we estimate655

the relationship between the height and radius via post-656

processing of these photos.657
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FIG. 6. (A) Manufacturing of trapezoid-based origami by a CNC milling machine. (B) Setup designed to perform the nonlinear
rigid isometry experiments on the trapezoid-based origami. (C) Details of the setup showing the linear slide system used to
change the configuration of the specimen during the experiments. The sample is constrained through multiple sliders inserted
into a rail.
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man, and K. Bertoldi, Multistable inflatable origami722

structures at the metre scale, Nature 592, 545 (2021).723

[17] T. Tachi, Generalization of rigid-foldable quadrilateral-724

mesh origami, Journal of the International Association725

for Shell and Spatial Structures 50, 173 (2009).726

[18] M. Stavric and A. Wiltsche, Quadrilateral patterns for727

rigid folding structures, International journal of architec-728

tural computing 12, 61 (2014).729

[19] T. A. Evans, R. J. Lang, S. P. Magleby, and L. L. Howell,730

Rigidly foldable origami gadgets and tessellations, Royal731

Society open science 2, 150067 (2015).732

[20] P. Dieleman, N. Vasmel, S. Waitukaitis, and M. van733

Hecke, Jigsaw puzzle design of pluripotent origami, Na-734

ture Physics 16, 63 (2020).735

[21] F. Feng, X. Dang, R. D. James, and P. Plucinsky,736

The designs and deformations of rigidly and flat-foldable737

quadrilateral mesh origami, Journal of the Mechanics and738

Physics of Solids 142, 104018 (2020).739

[22] L. H. Dudte, G. P. Choi, and L. Mahadevan, An additive740

algorithm for origami design, Proceedings of the National741

Academy of Sciences 118, e2019241118 (2021).742

[23] M. Stern, M. B. Pinson, and A. Murugan, The complex-743

ity of folding self-folding origami, Physical Review X 7,744

041070 (2017).745

[24] S. W. Grey, F. Scarpa, and M. Schenk, Strain reversal in746

actuated origami structures, Physical review letters 123,747

025501 (2019).748

[25] M. B. Pinson, M. Stern, A. Carruthers Ferrero, T. A.749

Witten, E. Chen, and A. Murugan, Self-folding origami750

at any energy scale, Nature communications 8, 15477751

(2017).752

[26] B. G.-g. Chen and C. D. Santangelo, Branches of trian-753

gulated origami near the unfolded state, Physical Review754

X 8, 011034 (2018).755

[27] L. H. Dudte, E. Vouga, T. Tachi, and L. Mahadevan, Pro-756

gramming curvature using origami tessellations, Nature757

materials 15, 583 (2016).758

[28] S. P. Vasudevan and P. P. Pratapa, Homogenization of759

non-rigid origami metamaterials as kirchhoff–love plates,760

International Journal of Solids and Structures , 112929761

(2024).762

[29] M. Czajkowski, J. McInerney, A. M. Wu, and D. Rock-763

lin, Orisometry formalism reveals duality and exotic764

nonuniform response in origami sheets, arXiv preprint765

arXiv:2312.12432 (2023).766

[30] H. Xu, I. Tobasco, and P. Plucinsky, Derivation of an767

effective plate theory for parallelogram origami from768

bar and hinge elasticity, arXiv preprint arXiv:2311.10870769

(2023).770

[31] Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang, and771

L. Mahadevan, Geometric mechanics of periodic pleated772

origami, Physical review letters 110, 215501 (2013).773

[32] M. Schenk and S. D. Guest, Geometry of miura-folded774

metamaterials, Proceedings of the National Academy of775

Sciences 110, 3276 (2013).776

[33] H. Nassar, A. Lebée, and L. Monasse, Curvature, met-777

ric and parametrization of origami tessellations: theory778

and application to the eggbox pattern, Proceedings of the779

Royal Society A: Mathematical, Physical and Engineer-780

ing Sciences 473, 20160705 (2017).781

[34] P. P. Pratapa, K. Liu, and G. H. Paulino, Geometric782

mechanics of origami patterns exhibiting poisson’s ra-783

tio switch by breaking mountain and valley assignment,784

Physical review letters 122, 155501 (2019).785

[35] H. Nassar, A. Lebée, and E. Werner, Strain compatibility786

and gradient elasticity in morphing origami metamateri-787

als, Extreme Mechanics Letters 53, 101722 (2022).788

[36] J. McInerney, G. H. Paulino, and D. Z. Rocklin,789

Discrete symmetries control geometric mechanics in790

parallelogram-based origami, Proceedings of the National791

Academy of Sciences 119, e2202777119 (2022).792

[37] T. Tachi, Rigid folding of periodic origami tessellations,793

Origami 6, 97 (2015).794

[38] J. McInerney, B. G.-g. Chen, L. Theran, C. D. Santan-795

gelo, and D. Z. Rocklin, Hidden symmetries generate796

rigid folding mechanisms in periodic origami, Proceed-797

ings of the National Academy of Sciences 117, 30252798

(2020).799

[39] J. M. Gattas, W. Wu, and Z. You, Miura-base rigid800

origami: parameterizations of first-level derivative and801

piecewise geometries, Journal of Mechanical design 135,802

111011 (2013).803

[40] Y. Du, T. Keller, C. Song, Z. Xiao, L. Wu, and J. Xiong,804

Design and foldability of miura-based cylindrical origami805

structures, Thin-Walled Structures 159, 107311 (2021).806

[41] D. Misseroni, P. P. Pratapa, K. Liu, and G. H. Paulino,807

Experimental realization of tunable poisson’s ratio in de-808

ployable origami metamaterials, Extreme Mechanics Let-809

ters 53, 101685 (2022).810

[42] Y. Hu, H. Liang, and H. Duan, Design of cylindrical811

and axisymmetric origami structures based on general-812

ized miura-ori cell, Journal of Mechanisms and Robotics813

11, 051004 (2019).814

[43] X. Dang, L. Lu, H. Duan, and J. Wang, Deployment kine-815

matics of axisymmetric miura origami: Unit cells, tessel-816

lations, and stacked metamaterials, International Journal817

of Mechanical Sciences 232, 107615 (2022).818

[44] X. Dang and G. H. Paulino, Axisymmetric blockfold819

origami: a non-flat-foldable miura variant with self-820

locking mechanisms and enhanced stiffness, Proceedings821

of the Royal Society A 480, 20230956 (2024).822

[45] A. A. Evans, J. L. Silverberg, and C. D. Santangelo, Lat-823

tice mechanics of origami tessellations, Physical Review824

E 92, 013205 (2015).825

[46] P. P. Pratapa, P. Suryanarayana, and G. H. Paulino,826

Bloch wave framework for structures with nonlocal in-827

teractions: Application to the design of origami acoustic828

metamaterials, Journal of the Mechanics and Physics of829

Solids 118, 115 (2018).830

[47] R. Imada and T. Tachi, Geometry and kinematics of831

cylindrical waterbomb tessellation, Journal of Mecha-832

nisms and Robotics 14, 041009 (2022).833



14

[48] D. Lovelock and H. Rund, Tensors, differential forms,834

and variational principles (Courier Corporation, 1989).835

[49] M. Schenk, S. D. Guest, et al., Origami folding: A struc-836

tural engineering approach, Origami 5, 291 (2011).837

[50] E. Filipov, K. Liu, T. Tachi, M. Schenk, and G. H.838

Paulino, Bar and hinge models for scalable analysis of839

origami, International Journal of Solids and Structures840

124, 26 (2017).841

[51] C. Zhou, Y. Zhou, and B. Wang, Crashworthiness design842

for trapezoid origami crash boxes, Thin-Walled Struc-843

tures 117, 257 (2017).844

[52] Huffman, Curvature and creases: A primer on paper,845

IEEE Transactions on computers 100, 1010 (1976).846

[53] K. Liu, P. P. Pratapa, D. Misseroni, T. Tachi, and G. H.847

Paulino, Triclinic metamaterials by tristable origami848

with reprogrammable frustration, Advanced Materials849

34, 2107998 (2022).850



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

OrigamiTrapezoidsSubmissionSupplement.pdf

https://assets-eu.researchsquare.com/files/rs-5045672/v1/d6ec47ffe1e8adc8501fba9b.pdf

