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Coarse-grained fundamental forms for
characterizing isometries of trapezoid-based
origami metamaterials

James P. McInerney 1 , Diego Misseroni 2, D. Zeb Rocklin3,
Glaucio H. Paulino 4,5 & Xiaoming Mao 1

Investigations of origami tessellations as effective media reveal the ability to
program the components of their elasticity tensor, and thus control the
mechanical behavior of thin sheets. However, existing efforts focus on crease
patterns that are composed of parallelogram faces where the parallel lines
constrain the quasi-static elastic response. In this work, crease patterns com-
posed of more general trapezoid faces are considered and their low-energy
linear response is explored. Deformations of such origami tessellations are
modeled as linear isometries that do not stretch individual panels at the small
scale yet map to non-isometric changes of coarse-grained fundamental forms
that quantify how the effective medium strains and curves at the large scale.
Two distinct mode shapes, a rigid breathing mode and a nonrigid shearing
mode, are identified in the continuum model. A specific example, which we
refer to as Arc-Morph origami, is presented with analytical expressions for its
deformations in both the discrete and continuous models. A developable
specimen is fabricated and tested to validate the analytical predictions. This
work advances the continuum modeling of origami tessellations as effective
mediawith the incorporation ofmore generic faces andground states, thereby
enabling the investigation of novel designs and applications.

Origami sheets are two-dimensional surfaces with predefined
creases that control their three-dimensional response to
mechanical loads1–4. The fundamental principle behind the beha-
vior of origami is the difference between the energy scales of
elastic deformations that bend the panels (cubic in sheet thick-
ness) and elastic deformations that stretch the panels (linear in
sheet thickness). This scaling leads to a quasi-static, low-energy
response dominated by the deformations that do not stretch the
panels, which we refer to as linear isometries. Since this principle
relies solely on the thickness of the sheet, the linear isometries
corresponding to a particular crease pattern are largely material
independent and therefore realizable in both metallic5–9 and

polymeric10–12 materials over a range of length scales. Hence, an
understanding of the origami kinematics tends to be more con-
sequential than an understanding of the origami dynamics for the
design of origami metamaterials. There are two specific applica-
tions of origami kinematics that motivate our work.

The first application of interest is the class of isometries referred
to as rigid folding mechanisms that fold the origami sheet along its
predefined creases while keeping the panels entirely rigid (no
stretching or bending). These rigid folding mechanisms are useful for
the deployment and transformation of structures found in various
engineering applications including solar arrays13,14, heart stents15, and
temporary shelters16. However, arbitrary quadrilateral-mesh crease
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patterns are not rigidly foldable and a significant body of work is
devoted towards the development of design principles17–22. Moreover,
arbitrary loads can lead to heterogeneous actuation of the
mechanism23,24 as well as undesirable deformations due to the exis-
tence of isometries distinct from the rigid folding mechanism25 or the
intersection of separate branches in the configuration space26. There-
fore, efficientmodels for the response to external loads can inform the
methods for deployment and transformation of origami structures
along the programmed rigid mechanism without exciting undesirable
responses via alternative low-energy instabilities.

The second application of interest is the continuum approx-
imation (also referred to as homogenization or coarse-graining) of
linear isometries in periodic origami tessellations. Such approxima-
tions are valuable for both surface fitting27 and effective elasticity
models28–30, where deformations that do not stretch the individual
panels generate apparently non-isometric deformations at the large
scale. The main example in the existing literature is the class of
parallelogram-based origami sheets, such as the Miura-ori crease
pattern31,32. An origami tessellation in this class is quasi-planar, in that
its two primitive lattice vectors always lie in the same two-
dimensional plane, and exhibits one rigid folding mechanism that
changes its lattice vectors. Simultaneously, such a tessellation also
exhibits two nonrigid linear isometries that bend the panels in
addition to folding the creases. Approximating the origami tessella-
tion as a continuous sheet reveals that the rigid isometry generates
in-plane strain, the first nonrigid isometry generates out-of-plane
curvature, and the second nonrigid isometry generates out-of-plane
twisting31–36. These three modes function as a basis for more general
low-energy deformations in effect continuum models29,30. Moreover,
analytical calculations show the crease geometry necessarily pairs a
hydrostatic (dilation) strain mode with an anticlastic (saddle) cur-
vature mode and a deviatoric (pure shear) strain mode with a syn-
clastic (dome) curvature mode31–36.

Our work seeks to expand the investigation of parallelogram-
based origami sheets to more generic tessellations which possess
two crucial differences from those composed of parallelograms37,38.
The first difference is that a generic tessellation is quasi-cylindrical,
rather than quasi-planar, in that its two primitive lattice vectors
rotate about a common axis from cell to cell. The second difference
is that such a quasi-cylindrical tessellation exhibits two linear iso-
metries (rather than the one rigid and two non-rigid isometries dis-
cussed in the previous paragraph) that retain the quasi-cylindrical
geometry while changing its radius, height, and symmetry axis. We
investigate these two linear isometries in rigidly-foldable trapezoid-
based origami (TBO) tessellations, for which the constituent trape-
zoid faces have one less symmetry than the previously investigated
parallelogram faces, to exemplify continuum approximations for the
linear isometries in quasi-cylindrical origami tessellations. We show
exemplar TBO folded from cardstock in their ground state config-
urations in Fig. 1A–D(i) and in rigidly folded configurations in
Fig. 1A–D(ii). While such rigid folding mechanisms of TBO are iden-
tified for select geometries, such as the arc pattern, in previous
works39,40, our work also identifies and models the nonrigid iso-
metries shown in Fig. 1A–D(iii). Our theoretical model has two
components. The first component determines and solves the com-
patibility conditions for the linear isometries within a single cell,
which we show can be represented using the compatibility diagrams
shown in Fig. 1A–D(iv) where themeaning of the line styles and colors
is explained in Supplementary Note 4. The second component maps
these linear isometries to their continuum approximation, which
decomposes into one rigid breathing mode and one nonrigid
shearing mode. We showcase our analytical results for a class of
origami crease patterns derived from the geometry presented in
ref. 34 that we refer to as the Arc-Morph and perform laboratory
scale experiments on a specimenmanufactured from polypropylene.

Results
As shown in refs. 37,38, periodic origami tessellations with generic
faces adopt quasi-cylindrical ground states generated by the two pri-
mitive lattice vectors (ℓ1,2) and the two primitive lattice rotation
matrices (S1,2) (see Fig. 2A). Importantly, the lattice rotations share a
common axis (Ŝ) about which local frames are rotated by the respec-
tive lattice rotation angle (η1,2) and the lattice vector components
orthogonal to Ŝ define a unique radius of curvature (R). Thus, we
coarse-grain the lattice-scale geometry by taking the discrete cell
indices (n1, n2) to the continuous surface coordinates (φ, z) (see
Methods, Coarse-Graining). The coarse-grained geometry retains the
cylindrical embedding (see Supplementary Note 1) so we approximate
the ground state Xðφ, zÞ=R cosφx̂ +R sinφŷ + zẑ. From the embed-
ding, we compute the tangent vectors tμ ≡ ∂μX (using subscripts μ, ν to
denote the surface coordinates) and the normal vector n̂ �
tφ × tz=jtφ × tz j to construct the first fundamental form Iμν ≡ tμ ⋅ tν, the
second fundamental form IIμν � n̂ � ∂μtν , and the shape operator
S � III�1:

I =
R2 0

0 1

 !
, ð1Þ

II =
�R 0

0 0

� �
, ð2Þ

S =
� 1

R 0

0 0

 !
: ð3Þ

The shape operator has eigenvalues equal to the principal curvatures
(κ1 = − 1/R, κ2 = 0), eigenvectors equal to the principal directions
(v̂1 = ð1, 0Þ, v̂2 = ð0, 1Þ), determinant equal to the Gaussian curvature
(K = 0), and trace equal to twice the mean curvature (2H = − 1/R).

As shown in refs. 37,38, at the lattice-scale, these origami sheets
generically exhibit two linear isometries under periodic boundary
conditions which change the lattice vectors (ℓ1,2 → ℓ1,2 + Δ1,2) and the
lattice rotationmatrices (S1,2→ (1 + L1,2)S1,2), thereby inducing changes
in the radius (R → R + δR) and the rotation axis (Ŝ ! Ŝ+ δŜ) while
preserving the cylindrical character to first order (see Supplementary
Note 1). We write the generic deformation X → X + δX in terms of the
vector field δX= δXnðcosφx̂ + sinφŷÞ+ δXφð� sinφx̂ + cosφŷÞ+ δXzẑ
and determine the changes in the radial direction (δXn), the azimuthal
direction (δXφ), and the axial direction (δXz) that are mutually con-
sistent with cylindrical deformations below (see Supplemen-
tary Note 2).

Since cylinders have zero Gaussian curvature, the deformation
must satisfy δK = 0. The in-plane strain along the azimuthal and axial
directions take arbitrary, but spatially constant, values (δIφφ = εφφ
and δIzz = εzz) because they are unconstrained by the cylindrical
character of the deformation. Lastly, we consider a generic defor-
mation as a linear combination of a breathing mode that changes the
first principal curvature (δκ1 = − δR/R2) without changing the princi-
pal directions (δv̂1 = ð0,0Þ,δv̂2 = ð0, 0Þ) and a shearing mode that
changes the principal directions (δv̂1 = ð0,σ1Þ, δv̂2 = ðσ2, 0Þ) without
changing the first principal curvature (δκ1 = 0). Such modes are the
only two homogeneous deformations that maintain the cylindrical
character (see Supplementary Note 2). Here, εφφ, εzz, δR, σ1, and σ2 all
depend implicitly on the geometry of the underlying crease pattern,
and this relationship constitutes the basis of the origami sheets as
mechanical metamaterials. We find that the breathing mode (illu-
strated in Fig. 2C) is quantified by δXn = δR,δXφ = εφφ=ð2RÞ � δR

� �
φ,

and δXz = εzzz/2. The corresponding changes to the fundamental
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forms are written:

δI =
εφφ 0

0 εzz

� �
, ð4Þ

δII =
δR� εφφ

R 0

0 0

 !
, ð5Þ

Fig. 1 | Examples of trapezoid-based origami folded from cardstock. (i) quasi-
cylindrical ground states, (ii) rigid folding cylindrical isometry, (iii) non-rigid shear
isometry, and (iv) diagramatic representation of compatibility conditions with line
styles signifying the coupling between amplitudes on the adjoined vertices and
triangles indicating periodic directions (see Supplementary Note 4 for more

details).ACylindrical geometry fromArc-Miura.B Extension of the pattern in panel
A exhibiting a locked configuration.C Archimedean spiral from a graded Arc-Miura
pattern. D Lemniscate of Bernoulli from a graded Arc-Miura with a parallelogram
interface.
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δS =
δR
R2 0

0 0

 !
: ð6Þ

We find that the shearing mode (illustrated in Fig. 2D) is quantified by
δXn = 0, δXφ = εφφφ/(2R) + σ1Rz, and δXz = εzzz/2 + σ2φ. The corre-
sponding changes to the fundamental forms are written:

δI =
εφφ R2σ1 + σ2

R2σ1 + σ2 εzz

 !
, ð7Þ

δII = �
εφφ
R Rσ1

Rσ1 0

 !
, ð8Þ

δS =
1
R

0 σ2

�σ1 0

� �
, ð9Þ

Our work focuses on applying the above analysis to the particular
case of rigidly foldable TBO, including all of the crease patterns shown
in Fig. 1A–D(i) and, more generically, crease patterns for which the
parallel edges of the trapezoidal faces ensure ℓ1 ? Ŝ and ℓ2 k Ŝ along
the rigid folding configuration manifold. For the crease pattern in
Fig. 1A(i), the orientation of the lattice vectors is because the sub-
sequent parallel edges rotate the faces by complementary dihedral
angles so that there is no net rotation, similar to the reason a
parallelogram-based origami sheet stays planar. However, for the

crease pattern in Fig. 1B, the dihedral angles are not complementary
but still sum to 2π. The consequence is that the rigid folding
mechanism (demonstrated in Fig. 1A–D(ii)) is characterized by the
breathing mode of Eqns. ((4), (5), (6)), and, by process of elimination,
the remaining isometry (demonstrated in Fig. 1A–D(iii)) is character-
ized by the shearing mode of Eqn. ((7), (8), (9)). Interestingly, the
crease patterns shown in Fig. 1C, D exhibit similar behavior despite
having spatially varying crease patterns, and hence spatially varying
radii, that only repeat along the rotation axis.

We provide more clarity on these modes by developing unit cell
compatibility conditions for the class of TBO with parallel edges that
alternate in length. Rather than triangulating the crease pattern as
frequently done in previous works31–35, we separately consider folding
degrees of freedom on the vertices, denoted by the vertex amplitudes
V, and bending degrees of freedom on the faces, denoted by the face
amplitudes F (see Methods, Linear Isometry Model) as introduced in
ref. 36 for the special case of parallelogram-based origami. The
amplitude on a vertex maps to changes in the dihedral angles, which
are not required to be uniform along the edge unless the isometry is
rigid. Instead, a gradient in the folding along a crease generates
bending of the adjacent faces, as quantified by the respective face
amplitudes. For this reason, constraints on the face amplitudes can be
integrated out, thereby yielding compatibility conditions that map
fromvertex amplitudes to vertex constraintswhichwe illustrate via the
compatibility diagrams shown in Fig. 1A–D(iv). Here, each node is
assigned a vertex amplitude and the line style of the edges indicate
coupling coefficients that depend on the crease geometry (see Sup-
plementary Note 4). When the coupling coefficients are uniform along
the edges, such as in Fig. 1A(iv), the rigid mode (F =0 for all faces) is
represented by uniform assignment of vertex amplitudes (V = 1 for all
vertices). In contrast, when the coupling coefficients are nonuniform
along the edges, suchas in Fig. 1B(iv), the vertex amplitudes of the rigid
mode are proportional to one another to ensure the folding is uniform
along the creases. In either case, we find that this family of TBO always
exhibits a nonrigid mode represented by uniform face amplitudes
(F = 1 for all faces) and zero vertex amplitudes (V =0 for all vertices).
Since the breathing (shearing) mode is generated by the rigid (non-
rigid) isometry, its modal stiffness depends entirely on the stiffness of
the creases (faces). This representation of the isometries effectively
integrates the three-dimensional geometry out of the analysis to
enable a succinct analytical classification of the modes.

Analysis of Arc-Morph origami
We introduce the family of Arc-Morph origami, such as the example
shown in Fig. 3A. This family generalizes the Arc-Miura crease patterns
presented in refs. 39,40 to include the non-developable vertex geo-
metry from the family of Morph parallelogram-based origami intro-
duced in ref. 34. The unit cell of these periodic crease patterns is
constructed from copies of a base vertex that is parameterized by
the two independently chosen sector angles α and β. The three
remaining vertices of the cell have identical or supplementary
(α0 � π � α,β0 � π � β) sector angles and the distinction in the pre-
sent work is that the vertices are arranged to form trapezoid faces
rather than parallelograms. We exclusively consider isosceles trape-
zoids to simplify analytic expressions, but our model applies to tes-
sellations composed of more general trapezoids and with larger unit
cells such as those shown in Fig. 1B–D which contain increased num-
bers of faces. Thus, each of the trapezoids has two legs of length q, one
base of length p, and one base of either sα � p� 2q cosα or sβ �
p+2q cosβ (see Fig. 3B). This yields the three-dimensional design
space (α, β, q/p) for Arc-Morph, where the magnitude of p dictates the
scale of the system which has no role in our kinematic analysis.

Such a crease pattern has a a rigid folding mechanism that we
parameterize via the dihedral angle γ from which the remaining dihe-
dral angles shown in Fig. 3C. (θ, θ″ ≡ 2π − θ, ψ, and ψ″ ≡ 2π − ψ) are

Fig. 2 | Coarse-grained geometry. A Angled view of a quasi-cylindrical trapezoid-
based origami tessellation with lattice vectors ℓ1,2, lattice rotation axis Ŝ, and
characteristicheighth.BTop-downviewof the tessellation shown in (A)with lattice
rotation angle η1, radius R, and azimuthal surface coordinate φ. Continuum illus-
tration of the (C) breathing mode and (D) shearing mode induced by the linear
isometries of the tessellation shown in (A).
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determined. We compute the coarse-grained fundamental forms for a
generic ground state thenweuse themean curvature to determine the
radius and the Jacobian to determine the characteristic height:

R=
1
4

p+ sβ + ðp+ sαÞ cos
η
2

� �
csc

η
2
, ð10Þ

h= 2q sinα sinβ sin γ csc
η
2
: ð11Þ

We find the components of the fundamental forms exactly match
those shown in Eqn. ((1), (2), (3)).We denote the number of cells in the
azimuthal direction asN1 and the number of cells in the axial direction
asN2, then identify the instantaneous bounds of the coordinates in our
continuum approximation as 0 ≤ φ ≤ N1η(γ) and 0 ≤ z ≤ N2h(γ). Con-
sequently, the configuration manifold is bounded by the closure
condition of the faces γ = π shown in Fig. 3F and the closure condition
of the cylinder N1η = 2π shown in Fig. 3H. We find these conditions
restrict the space of viable configurations and system sizes, but we do
not provide a thorough exploration of the design space in this work.

We write the explicit expressions for the geometry along the rigid
folding mechanism in Methods, Arc-Morph Geometry. We show the
radius as a function of the height along the configuration manifold in
Fig. 3E, and use the inset to highlight a change in slope after the
cylinder reaches itsmaximumheight as shown inFig. 3G. Sincewehave
explicit formulae for the radius and the height, it is straightforward to
expand the fundamental forms about infinitesimal changes to the
dihedral angle γ along the rigid mechanism (see Supplementary
Note 5). However, we utilize our framework for the rigid isometry to
compare it with existing methods.

We first construct the compatibility diagram shown in Fig. 3D to
determine the amplitude representation for the rigid isometry. Since
there are three unique dihedral angles, we define the three folding
coefficients ζ � sinα sinβ sin γ, ξ � sinα2 sin θ, and χ � sinβ2 sinψ to
quantify the respective changes in the dihedral angles δγ, − δψ, and
− δθ. We see each edge of the diagramhas a single color, and therefore
conclude the rigid isometry of the mode is represented by the
vertex amplitudes Va =Vb =Vc =Vd = 1 and the face amplitudes
FA =FB =FC =FD =0. We integrate the changes in the lattice vectors
and the lattice rotationmatrices, then average according toour coarse-

Fig. 3 | Arc-Morph origami. A Perspective view of an example configuration with
N1 = 4 cells in the azimuthal direction and N2 = 4 cells in the axial direction. B Pri-
mitive cell with vertices labeled a, b, c, and d, faces labeledA,B, C, andD, and edge
lengths labeled p = 1, q = 0.7, sα, and sβ. C Sector angles labeled α = 1:1,α0 �
π � α,β = 2:1,β0 � π � β and dihedral angles labeled γ, ψ, ψ″ ≡ 2π − ψ, and
θ, θ″ ≡ 2π − θ. D Compatibility diagram for vertex amplitudes with edges repre-
senting the coupling coefficients based on the folding coefficients ζ, ξ, and χ.

ENonlinear evolution of the height and radius of the crease pattern shown in panel
A along the rigid folding mode, with the flat folded state shown in (F), maximal
height state shown in (G), and closed state shown in (H). F–H Front and top-down
views of states labeled in (E, I). I Linear response along the configuration manifold
as a function of the dihedral angle, γ, quantified by the pitch p induced by the non-
rigid mode and the ratio dh/dR of the rigid mode. The curve is shaded towards
σ2 = 0 for illustration purposes.
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graining procedure to find:

δR=
ζ 2

4
p+ sα + ðp+ sβÞ cos

η
2

� �
csc3

η
2
, ð12Þ

εφφ = ζ 2 cscηR 4R sin
η
4
+ ðp+ sαÞ cos

η
2

� �
, ð13Þ

εzz = 2 sinα sin β cos
θ
2
cos

ψ
2
, ð14Þ

where we determine εφφ and εzz directly from δIφφ and δIzz, respec-
tively. These results are self-consistent with the continuum model
which equates δIIφφ = δR − εφφ/R and δSφφ = δR=R2, and we obtain
them using a slight adjustment to the averaging step of our coarse-
graining procedure (see Supplementary Note 5). However, the
Jacobian relating the discrete lattice coordinates to the continuous
surface coordinates plays an important role here: the terms entering
the fundamental forms in Eqns. ((4), (5)) are not given by the partial
derivative of those in Eqns. ((1), (2)) with respect to the dihedral angle
that functions as the configuration parameter. Instead, the strains arise
from the derivatives of the Jacobian which highlights the way the
lattice geometry gives rise to the effective behavior of the material.
The axial strain εzz maps to changes in the height δh = hεzz/2 of the
cylinder whereas the azimuthal strain εφφ opens or closes the cylinder
without changing its curvature, which instead are characterized by δR.
We consider the ratio δh/δR analogously to the Poisson’s ratio but
instead characterizing the relative amount of axial stretching and
radial dilation. We see from our expressions in Eqns. ((12), (14)) that
when one of the dihedral angles (ψ or θ) changes its mountain/valley
assignment this ratio changes signs, which is the same observation
made for the Poisson’s ratio in parallelogram-based origami. This
further illustrates the functionality of Arc-Morph as a transformable
mechanical metamaterial.

We repeat this analysis for the nonrigid isometrywhichwe cannot
describe in terms of changes to the dihedral angles exclusively. Since
this crease pattern falls within the broader set of TBO that our theory
applies to, the nonrigid isometry is represented by the vertex ampli-
tudes Va =Vb =Vc =Vd =0 and the face amplitudes
FA =FB =FC =FD = 1. We again integrate the changes in the lattice
vectors and the lattice rotation matrices, then average according to
our coarse-graining procedure to find:

σ1 = 1, ð15Þ

σ2 = � R2 � 1
4
ðp2 + sαsβÞ tan

η
2
csc

η
2
, ð16Þ

where we determine σ1 and σ2 directly from Szφ = σ1=R and Sφz = σ2=R
and find that the diagonal components of the strain vanish:
εφφ = εzz = 0. We confirm these quantities are self consistent with
δIφz = δIzφ = R2σ1 + σ2, δIIφz = δIIzφ = Rσ1 without any adjustment to the
averaging step of our coarse-graining procedure. Here, there is an
apparent discrepancy regarding the units of σ1 and σ2: from
dimensional analysis of Eqn. (7), σ1 must have units of inverse area
and σ2 must be dimensionless. However, our calculations leading to
Eqns. ((15), (16)) use a dimensionless face amplitude to simplify our
calculations while the integration framework assumes the face
amplitude has units of inverse length. This is in contrast to the vertex
amplitudes which are always dimensionless. Introducing such a length
scale, for example from the square root of the cell area, resolves the
apparent discrepancy. The self consistencyofour results relies onboth
the averaging process in our coarse-grainingmethod and the inclusion
of the Jacobian to transform from the discrete lattice coordinates
to the continuous surface coordinates. While for the nonrigid

isometries of parallelogram-based origami the averaging is also
important, the Jacobian may be neglected because the ground states
are quasi-planar.

Experiments of Arc-Miura origami
We fabricate and test an example Arc-Morph crease pattern (see
Methods, Fabrication and Testing). We select a developable pattern
(β = π − α) so that we can construct the crease pattern from a mono-
lithic sheet (see Fig. 4A) rather than the assembly of individual panels,
such as done in ref. 41. This is the Arc-Miura, or arc pattern, family of
tessellations for which previous works investigated the rigidmode39,40.
Since the sector angles are not independently chosen, these crease
patterns have a two-dimensional design space parameterized by
(α, q/p) with the geometry indicated in Fig. 4B, C, E and the compat-
ibility diagram illustrated on the cell geometry in Fig. 4D. After fabri-
cation, the creases undergo plastic deformation and adopt the quasi-
cylindrical ground state shown in Fig. 4F; the tessellation tends to
return to this particular configuration after any deformation.

We perform a quantitative test of the nonlinear rigid isometry and
a qualitative test of the linear nonrigid isometry. For the rigid isometry,
we focus on the relationship between the height and radius then
compare with our analytical theory. Rather than averaging over the
vertices, which could lead to the accumulation of systematic error, we
measure the radii of the innermost (Ri) and outermost (Re) compo-
nents of the cross section. We show the experimentally measured
values and the analytical predictions in Fig. 4G, along with images of
the exact configurations measured in Fig. 5. We see good agreement
between the measurements and predictions until the tessellation
becomes fairly flattened at configuration 8. We attribute this dis-
crepancy,whichbecomesmorepronounced as the tessellationflattens
further, to systematic error arising from the large angle subtended by
the radial measurement. For the nonrigid isometry, we focus on the
general shape inducedunder loading conditions incompatiblewith the
rigid mode. We show the response of the sample loaded and sup-
ported from opposite corners in Fig. 4H. We see the type of shearing
mode that is consistentwith themode shape shown in Fig. 2Dbasedon
our analytical calculations.

Discussion
Our work develops analytical expressions for the large-scale low-
energy deformations of rigidly foldable TBO and demonstrates the
validity of our theory through experiment. We identify TBO as an
architecture for control of shearing and breathing modes of surfaces
through the geometry of the underlying crease pattern. Hence, our
results distinguish tessellations with trapezoid faces from those with
parallelogram faces and help to establish the classification of crease
geometries according to their large-scale response. This classification
can be utilized for more efficient inverse design by constraining the
design space according to which types of modes are compatible with
the target behavior. Interestingly, we find the mountain/valley
assignment controls the sign of the slope of the height-radius profile in
the same way that the assignment controls the Poisson’s ratio of
parallelogram-based origami34. This helps narrow the design space to
β = π − α (Arc-Miura) for applications that require a radius increasing
with height, β = α (Arc-eggbox) for a radius decreasingwith height, and
somewhere in between (Arc-Morph) for a non-monotonic profile.
These results showcase new functionality for origami as mechanical
metamaterials, either as thin-walled structures with target stiffnesses
or tubular coverings for snake-like robots, cables, and other long one-
dimensional assemblies. Further development is required for the
experimental demonstration of isometries in non-developable TBO, as
well as the quantitative validation of the rigid isometry near the flat-
tened state and the nonrigid isometry along the configuration mani-
fold. We note that the nonrigid isometries of parallelogram-based
origami still require the development of an experimental apparatus for
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their quantitative validation. For both trapezoid- and parallelogram-
based tessellations, such an experiment requires careful attention to
the loading mechanism so that the mode of interest is isolated and to
themeasurement system so that displacements are accurately tracked
through three-dimensional space.

The theory developed in the present work connects the discrete
representation to the continuum representation of locally uniform
isometric deformations in TBO, thereby characterizing their low-
energy kinematics at the large scale. It remains to test this theory
with more general trapezoid crease patterns via analytical or
numerical calculations. However, the underlying principles extend to
quadrilateral-mesh origami sheets without parallel edges, where the
breathing mode and the shearing mode are coupled along the con-
figuration manifold, as well as axisymmetric origami such as those in
refs. 42–44, where the size of the faces changes between cells so that
the continuum theory may adopt a conformally flat metric. Fur-
thermore, our methods extend to spatially varying isometries, such
as those explored linearly for parallelogram-based origami45,46 (see
Supplementary Note 6) and nonlinearly for the cylindrical water-
bomb origami47, where the fundamental forms and their derivatives
are intimately related via the Gauss-Codazzi equations in the con-
tinuum regime48. Extending our work in this way provides a rich
avenue for future investigations that seek to incorporate the large-
scale response of origami tessellations into models based on elastic

plate theory, where we anticipate sinusoidal variations of mean
curvature in the bulk and finite amounts of Gaussian curvature
localized towards the boundary of the system. We expect our
approximation to improve as the number of cells increases, and the
consistency between the response shown in Fig. 1A–D with crease
patterns that have increased numbers of faces in the unit cells, non-
isosceles trapezoid faces, and domain walls with parallelogram faces
showcases the robustness of our predictions. Furthermore, our focus
on geometric mechanics suggests our theory scales with the system
size and the isometries should be observable at the sub-millimeter
scale on crease patterns fabricated using, e.g., two-photon litho-
graphy as used in ref. 12.

In addition to characterizing the kinematics, quantifying the
stiffness of the breathing and shearing modes is important for the
application of our theory towards origami engineering. Such modal
stiffness is frequently modeled via a truss model with Hookean
potentials for the folding, bending, and stretching of the panels46,49,50.
In contrast to our theory, such truss models utilize virtual creases
across the diagonals of the panels to quantify panel bending. Since our
theory attempts to directly model the deflection field of the panels
instead, it may be possible to equate the stiffness associated with the
vertex amplitudes and the face amplitudeswith scaling relations based
on the dimensions of the panels and the elastic moduli of the con-
stituent material. This could be especially valuable for the design of

Fig. 4 | Fabricated Arc-Miura origami. A Fabricated tessellation with primitive
lattice vectors ℓ1,2. B Primitive cell vertices labeled a, b, c, and d and faces labeled
A,B, C, andD.C Sector angles labeled α and α0 � π � α and dihedral angles labeled
γ,ψ, andψ″ ≡ 2π −ψ.DCompatibility diagramwith amplitudesVa,Vb,Vc, and Vd on
the corresponding vertices and colors indicating the coupling coefficients ζ/q, − ξ/s,
and + ξ/p. E Edge lengths labeled p, q, and s. F View of folded specimen with height

h, exterior radius Re, and interior radius Ri with the mountain valley assignment of
the folded creases indicated.G Radius as a function of height comparing one set of
experimental measurements on one sample with theoretical predictions. Black
dashed line indicates flattened state. H Excitation of the non-rigid isometry. Scale
bar is 30mm in both panels (F, H).
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impact mitigating origami crash-boxes that utilize trapezoidal faces51.
Our vision is to extend the utility of the computational design enabled
by, e.g., ref. 20 to include the target effective elastic behavior in
addition to the target shapes.

Methods
Coarse-graining
We coarse-grain the ground states of a periodic origami tessellation by
averaging its primitive lattice vectors over all admissible primitive unit
cells to determine the coarse-grained tangent vectors of the tessella-
tion. We do this in two steps. First, we average the lattice vectors over
the copies of a standard unit cell that changewhich vertex is located at
the origin and denote the result �ℓμ. For example, one copy has vertex a
at the origin with lattice vectors pointing between vertex a in adjacent
cells and another copy has vertex b at the origin with lattice vectors
pointing between vertex b in adjacent cells. Second, we average these
copies between adjacent cells so that the forwards and backwards
tangent vectors are equal and opposite. This yields our definition for

the coarse-grained tangent vectors:

tμ � 1
2
ð1+S�1Þ �ℓμ: ð17Þ

Additionally, we average the cell-to-cell change in the primitive
lattice vectors over all admissible primitive unit cells to
determine the change in the coarse-grained tangent vectors. We
do this by averaging over the change in the tangent vector
defined in Eqn. (17) from an initial cell to the subsequent cell
and from the previous cell to the initial cell so that the forwards
and backwards derivatives of the tangent vectors are equal and
opposite. Since the change in the tangent vectors is given by the
action of the lattice rotation matrix or its inverse, this yields our
definition for the derivative of the coarse-grained tangent
vectors:

∂μtν �
1
2
ðSν � S�1

ν Þtμ: ð18Þ

Fig. 5 | Rigid foldingexperimentsofArc-Miuraorigami.Panels (A–H) show the configurations for the correspondingmeasurements shown in Fig. 4Gwith heighth, inner
radius Ri, and exterior radius Re.
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These partial derivatives satisfy ∂μtν = ∂νtμ. The indices of Eqns. ((17),
(18)) remain the cell indices (n1, n2). We transform to the continuous
surface coordinates ðê1 =φ, ê2 = zÞ via the Jacobian Jμν =∂êμ=∂nν . For
the trapezoid-based origami crease patterns we consider, we have
Jφ1 = 1= sinη, Jz2 = 1=h, and Jφ2 = Jz1 = 0, where η is the lattice rotation
angle and h is the magnitude of the second lattice vector.

We similarly coarse-grain the infinitesimal deformation of the
periodic origami tessellation generated fromahomogeneous isometry
by averaging the corresponding lattice displacement (Δμ) and lattice
angular velocity (Lμ) over all primitive unit cells. We again do this in
two steps. First, we average the latticedisplacement and lattice angular
velocity over the same set of standard unit cells used to compute �ℓμ
above. Here, there are an additional four copies of each standard cell
distinguished by the orientation of the frame for each of the four
corners thatmeet at the vertex set at the origin. We denote the results
�Δμ and �Lμ. Second, we expand Eqns. ((17), (18)) in terms of these
quantities:

δtμ =
1
2
ðð1+S�1

μ Þ�Δμ � S�1
μ
�Lμ

�ℓμ, ð19Þ

δ∂μtν =
1
2

Sν � S�1
ν

� �
δtμ + �LνSν + S

�1
ν
�Lν

� �
tμ

� �
: ð20Þ

Again, the partial derivatives satisfy δ∂μtν = δ∂νtμ and we transform
from the discrete cell indices to the continuous surface coordinates via
the Jacobian. While we do not compute an embedding directly, this
procedure is sufficient to compute the fundamental forms and char-
acterize the geometry of the origami tessellations. These methods
extend to the crease patterns shown in Fig. 1C, D that are not periodic
in the azimuthal direction but are still composed of cellular building
blocks by performing the first step of our averaging between analo-
gous, but nonequivalent, vertices in both the forward and backwards
directions.

Linear isometry model
We model the linear isometries via the angular velocity field, denoted
ω, which generates the infinitesimal rotation of elements of the sheet.
We parameterize this angular velocity field via amplitudes on the
vertices, denoted Va, and amplitudes on the faces, denoted FA, where
we use lowercase (uppercase) Latin superscripts to label the vertex
(face) within the primitive unit cell that the amplitude is assigned to.
The meaning of the amplitudes is as follows. The difference in the
angular velocity between the corners of two faces thatmeet at vertex a
and share the ith edge of the vertex is:

Δω= ð�1ÞiVaζ ai , ð21Þ

ζ ai � r̂ai+ 1 × r̂
a
i+ 2 � r̂ai + 3, ð22Þ

with i defined cyclically on the four edges emanating fromvertex a and
r̂ai the corresponding edge direction.We refer to the triple products ζ ai
as the folding coefficients, whichwe canwrite explicitly as functions of
the sector and dihedral angles. This local solution ensures that the net
rotation around the vertex vanishes to first order in the angular velo-
city. Similarly, the difference in the angular velocity between the cor-
ners of face A that share the ith edge of the face is:

Δω= ð�1ÞiFAλAi , ð23Þ

λAi � jrAi + 2j, parallel edges ,
jrAi j, non� parallel edges

(
, ð24Þ

with i defined cyclically on the four edges bounding face A and jrAi j the
corresponding edge length. This local solution ensures that the net
rotation anddisplacement around the face vanishes tofirst order in the
angular velocity.

We compute the net change in the orientation between any two
corners of the origami tessellation by choosing a path composed of
corner-to-corner segments and summing over the amplitude-
dependent contributions to the angular velocity from Eqns. ((21),
(23)). Similarly, we compute the net change in the position between
any two corners by computing the change in the orientation between
the starting corner andeachcorner along thepath, then summing each
of their cross products with the subsequent corner-to-corner segment
along the path. The amplitudes are constrained such that the total
change in the angular velocity on a loop around any edge vanishes.
These conditions ensure that both the net rotation and net displace-
ment over any closed loop of the tessellation vanishes, and conse-
quently that none of the elements of the sheet stretch to first order in
the angular velocity. We provide a detailed derivation in Supplemen-
tary Note 2.

Arc-morph trapezoid-based origami geometry
We write the vertex basis vectors and the primitive lattice vectors for
the family of Arc-Morphwith vertex a at the origin of the primitive unit
cell as:

ra = 0, 0, 0
� �

, ð25Þ

rb = p, 0, 0
� �

, ð26Þ

rc = sα +q cosα, q sinα cos θ
2 , q sinα sin θ

2

� �
, ð27Þ

rd = q cosα, q sinα cos θ
2 , q sinα sin θ

2

� �
, ð28Þ

ℓ1 = p+ sβ cos
η
2 , sβ sin

η
2 , 0

� �
, ð29Þ

ℓ2 = 0, 0, 2q sinα sinβ sin γ
sinη

2

� �
: ð30Þ

For all unit cells that appear in the averaging process, the lattice
rotation angle is:

η= 2ðπ � δÞ, ð31Þ

where we parameterize the dihedral angles entering Eqns. (27–31)
through standard application of spherical geometry52:

θ= 2 arctan
cos β� cosα cos δ

sinα sin δ
,
sin β sin γ

sin δ

� �
, ð32Þ

ψ=2 arctan
cosα � cosβ cos δ

sinβ sin δ
,
sinα sin γ

sin δ

� �
, ð33Þ

δ � arccosðcosα cosβ+ sinα sin β cos γÞ: ð34Þ

Fabrication and testing
We fabricate the Arc-Miura by milling a 1 mm thick black poly-
propylene sheet using a 3-axis CNCmillingmachine (Roland EGX-600,
accuracy 10 μm), as illustrated in Fig. 6A and previously achieved in
refs. 41,53. We form the mountain/valley creases by engraving 0.9mm
into the polypropylene sheet using a ball-end tool with a radius of
1mm.To facilitate unconstrained folding,we add 2mmdiameter holes
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to eachvertexof the tessellation. Thismeasure is crucial for preventing
stress concentration where multiple creases converge, taking into
account the non-zero thickness of the actual sample. Finally, since the
Arc-Miura is developable, we manually fold the milled/engraved
polypropylene sheet. The resulting 428.78mm by 383.63mm speci-
men is chosen based on the size of the available tooling.

We measure the height-radius profile along the nonlinear rigid
isometry of the fabricated Arc-Miura using the experimental setup
illustrated in Fig. 6B, C. The setup consists of a linear slide system
equipped with several sliders connected to an optical table and is
arranged horizontally tomitigate gravitational effects. We connect the
sample to a linear slide system via three sliders: one in the middle and
the other two at its ends. Each slider is equipped with a locking system
tomaintain the sample at a fixed height. We affix PMMA spacers to the
sliders using 2mm diameter bolts, as illustrated in Fig. 6B to ensure
secure connection between the sample and the sliders. Additionally,
we connect two L-shaped plates to extra sliders to induce the rigid
folding of the tessellation and establish the desired height for the
sample. We design these plates to apply compression and tension to
the sample, thereby facilitating both folding and unfolding.

We integrate two rulers into the setup: one to verify the imposed
height of the sample and the other as a reference scale bar for post-
processing analysis of captured photos. We position two cameras,
oriented orthogonal to one another, to capture images of the sample
as we induce the rigid folding motion. We position the first camera
(Sony Alpha 9) in front of the sample to capture the frontal view,
thereby facilitating the estimation of the radius. This camera is
equipped with a telephoto GMaster FE 100–400mm lens tominimize
distortion and enhance contrast between the foreground and the
background.We position the second camera (Sony Alpha 6300) to the
side of the sample to capture the lateral view, thereby facilitating the
estimation of the height. This camera is equipped with a Vario-Tessar
T* FE 24–70mm lens.

The experiments proceeded as follows. A specific height is
imposed on the sample using the L-shaped plates and the sample is
secured in this configuration by locking the sliders with the locking
system. We use a tape measure at various positions along the circular
edge of the tessellation tomanually verify the uniformity of the sample
height. We then capture a photo with each of the two cameras in the
locked configuration. We repeat this process for eight different con-
figurations, specifically imposing heights of 31.5 cm, 32 cm, 33 cm,
34 cm, 35 cm, 36 cm, 37 cm, and 37.5 cm. Finally, we estimate the

relationship between the height and radius via post-processing of
these photos.

Data availability
The raw images from the experimental tests are available in the open
access repository at Zenodo [https://doi.org/10.5281/zenodo.
14609862].

Code availability
Code that produces rigid embeddings of the Arc-Morph is available in
theopen access repository atZenodo [https://doi.org/10.5281/zenodo.
14609862].
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