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Origami extends beyond intricate paper creations, envisioning revolutionary

engineering applications. While 3D printing has simplified fabricating complex

structures, Kresling origami remains predominantly paper based due to the chal-

lenge of achieving multistable behavior, especially at a small scale. Our study

focuses on investigating modifications to the energy landscape induced by changes

in crease geometrical parameters, addressing the e!ects of viscoelasticity in the

creases. The latter aspect is investigated using di!erent rubbery materials with

varying relaxation moduli. Considering the limitations of manufacturing tech-

niques, we also provide design insights for crease geometry and distribution,

along with photopolymers suitable for fabricating both multi- and monomaterial

bistable cells, at both micro- and macro- scales. By leveraging 3D printing and

overcoming its material and technological constraints, our goal is to contribute

to a deeper understanding of the mechanics of 3D printed materials and broaden

their applications into new frontiers.
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1 Introduction

Once origami has surpassed the barrier of being merely decorative folded paper objects, it has

become a source of inspiration for creating groundbreaking devices across various engineering

fields (1). Kresling origami is currently one of the most studied origami patterns for the devel-

opment of versatile structures, particularly in the programmable soft robotics area (2–9), highly

deployable and energy absorption devices (10–14), and wave control metastructures (15–18). Kres-

ling origami is considered a natural twisted buckling shape that results from the compression of

two interacting tubes. This pattern can also be identified in nature, for example, in the bellows

shapes found in the abdomen of hawk-moths (19,20). The intrinsic bistability exhibited by a single

Kresling cell, permits the achievement of controlled compliant mechanisms and in the case of cou-

pled Kresling cell modules, multistability (21–27). The material characteristics of the creases play

a key role in Kresling origami mechanics, regulating the contraction/expansion process, tailoring

the overall sti!ness, and leading to mono or bistable behaviour (28). Thus, the creases become

essential components for controlling the energy landscape of the Kresling cell. Manual, subtractive

and additive manufacturing processes have been used for the fabrication of Kresling structures

with materials di!erent than the traditional paper or cardboard. This is mostly done at the macro

and meso-scale. Since multi-material 3D printing techniques, such as Material Jetting (MJ), Fused

Deposition Modeling (FDM), or Fused Filament Fabrication (FFF), enable a more direct method-

ology to manufacture complex origami shapes and the use of rigid and flexible materials during a

single printing round, their popularity has been increasing among academics and industry. There

are current examples that exploit these techniques for the fabrication of Kresling structures, with

panels made up of sti!er materials and softer creases that act as hinges. It allows for a smoother

transition between an expanded and a compressed state, or vice-versa, by using di!erent photopoly-

mers (29–31) or filaments (32–36). In addition, the use of flexible creases improves the fatigue

resistance and life cycle of the Kresling cells (37). Resin-based techniques, such as MJ, o!er the

possibility to build objects with high precision (layers 16-27 microns), a lower level of anisotropy

(<5%), smoother surface finishing, fewer support removal operations, stronger interface bond be-
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tween rigid and flexible parts, and a broader range of soft photopolymers for fabricating flexible

creases, compared to other multi-material printing processes.These types of soft photopolymers

are characterized by a long-range crystalline order, which enhances their mechanical strength and

enables tunable deformation responses (38). However, this type of 3D printing photo-resins exhibits

an inherent viscoelastic (39) behavior that can lead to a temporary bistability in Kresling cells and

a gradual loss of sti!ness over time. Consequently, the expected achievement of this mechanical

characteristic in theory tends to be compromised in practice, and the Kresling cells return to their

initial configuration prematurely. Moreover, the technological limitations of most multi-material

3D printers could restrict the possibility of miniaturizing devices, especially in demanding sectors

such as biomedical for the fabrication of drug delivery soft robotics. For instance, the minimum wall

thickness is constrained by the nozzle size of extrusion printers in FDM and FFF techniques, typi-

cally ranging from 0.25 mm to 1.00 mm depending on the current printer series (40,41). Regarding

MJ, producing strong load-bearing elements with less than 1.0 mm thickness is restricted due to

the likelihood of presenting defects (42). Furthermore, the majority of the ”micro-scale” printers

currently available in the market still utilize a single photo-resin. Therefore, this limitation prevents

direct fabrication of Kresling cells with the required di!erence in sti!ness between rigid panels

and soft creases, and this feature is essential for facilitating the characteristic contraction/expansion

mechanism, as seen in multi-material techniques.

1.1 Motivation and outline

The outcomes of our study provide design insights for programming the energy landscape of 3D

printed Kresling cells, counteracting the material and technological limitations in 3D printing. Our

goal is to enable the manufacturing of more precise, reliable, scalable and multistable Kresling

structures. We explored two main manufacturing approaches: Multi-material and Mono-material.

In the multi-material scenario, rigid and rubbery photopolymers are assigned to the panels and

creases, respectively. Although the bending of the panels plays a significant role in the folding of

non-rigid Kresling cells, as seen in paper-based models, we chose to print the panels using rigid

materials to better understand the role of the geometry of the creases on the energy landscape of

the Kresling cell. Therefore, the primary folding relies mostly on the flexible, rubbery-like creases.
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We initially defined the fundamental geometrical parameters of a cylindrical Kresling cell to

achieve theoretical bistability and developed parametric 3D models based on this configuration, as

illustrated in Fig. 1A. However, the viscoelastic nature of rubbery photopolymers interferes with

practical bistability, causing the cell to prematurely return to its original configuration during the

compression/expansion process. Then, we implemented a design strategy that involved gradually

reducing the cross-section of the crease geometries. This created peak and valley creases with

V+circular shapes, variable widths (𝐿), and internal thicknesses (𝑀𝑁). A parametric study was

conducted to assess the influence of these reductions on cross-section and rotational sti!ness,

using Reduction Factors (𝑂𝑃) ranging from 0.25 ↑ 𝑂𝑃 ↑ 0.80, as shown in Fig.1B. These gradual

reductions facilitated transitions between bistable (Bi), and monostable (M) behavior, as detailed

in the results section 2.

The bistable behavior is related to a Kresling cell whose energy landscape exhibits a second

local minimum of energy, and negative force in the load path. We categorized the behavior as

monostable when the Kresling cell’s load path does not intersect its displacement axis at zero

load (43).

Time-dependent stress-strain responses and energy loss are key characteristics of viscoelastic

materials, which exhibit residual strain that recovers over time, allowing the material to return

to its original state. This results in temporary bistability. Once stress relaxation occurs, stability

is lost, and the structure gradually returns to its initial configuration. In our second analysis, we

evaluated these e!ects in bistable multi-material Kresling cells with rubbery photopolymer creases

of varying relaxation moduli. In the numerical simulations, we considered elasto-plastic and visco-

hyperelastic models with 3D hybrid formulation elements to accurately capture the mechanical

behavior of 3D-printed rigid and rubbery photopolymers, respectively. This approach o!ers a more

realistic alternative to traditional 2D origami models, particularly for materials such as paper or

thin polymeric sheets.

We experimentally validated the load paths and energy landscapes obtained numerically by

testing 3D-printed Kresling cells fabricated using the Polyjet technique. In addition, we performed

microscopic characterization of the rubbery creases to assess potential dimensional discrepancies

between the CAD model and actual printed dimensions, as illustrated in Fig. 1C. Lastly, we

explored alternative designs for a mono-material bistable cell, as depicted in Fig. 1D, aimed
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at microfabrication. The sti!ness di!erences between creases and panels are achieved through

geometric reductions, including voids along the peaks and valleys. Furthermore, we also investigated

the e!ects of various 3D printing photo-resins on Kresling multistability and the programmability

of monostable Kresling assemblies through crease sti!ness distribution.

2 Results

2.1 Parametric study of creases geometry for Bistability

First, we selected the following initial sizing configuration for the parametric design of 3D Kresling

cells, shown in Fig. 1A: polygons with n=6 sides, initial relative angle 𝑄𝑅 = 𝑆/6, and an aspect

ratio 𝑇𝑅/𝑈=1.75, as detailed in sections S.1.1 and S.1.2 of Supplementary Materials and Methods.

Initially, we analyzed Kresling cells with intact crease cross-sections. The results showed that

their bistability was compromised by a sudden return to the initial configuration, attributed to the

viscosity of the rubbery creases (as further explained in the Supplementary Text S.2.1).

As a design strategy to achieve bistability and program energy landscapes, we conducted a

parametric study to assess how gradually reducing crease cross-sections influences the energy

landscape. The geometrical changes illustrated in Fig. 1B were proposed based on the following

procedure: The upper V-shape remained constant, preserving the crease width 𝐿, while the bottom

part was gradually reduced by considering a variable cutting radius 𝑀𝑉. It encompasses a circum-

ference with its center at the extreme vertex o. Using imposed reduction factors, denoted as 𝑂𝑃,

we can control the decrease of the parameter 𝑀𝑉 relative to the limiting crease radius 𝑈↓, and thereby

determine the extent of crease cross-section reduction. Accordingly, we can define the reduction

factor as: 𝑂𝑃 = 𝑀𝑉/𝑈↓.
We then introduced a new geometrical parameter corresponding to the internal thickness 𝑀𝑁.

This term represents the di!erence between the external thickness 𝑀 and the variable cutting-radius

𝑀𝑉, which depends on the selected reduction factor 𝑂𝑃. As the 𝑂𝑃 values increase, the generated

creases exhibit smaller internal thickness 𝑀𝑁 and these gradual reductions can be quantified as the

ratios of the reduced to intact cross-sections, 𝑊̃/𝑊, and their corresponding rotational sti!ness,

𝑋̃/𝑋 . Here, the reduced cross-sections and corresponding rotational sti!ness are denoted by 𝑊̃ and
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Figure 1: 3D models of the Kresling cell. (A) Multi-material (MM) with crease design cases. (B) Crease cross-section

gradual reductions derived from the former intact creases cross-sections, 𝑊, with a variable width-thickness ratio 𝐿/𝑀,
an internal thickness 𝑀𝐿 obtained from cutting radius 𝑀𝑀 and reduction factors 𝑂𝑃. Here, 𝑊̃ and 𝑊 represent the reduced

and intact cross-sections, respectively. Similarly, 𝑋̃ denotes the rotational sti!ness of the reduced cross-sections, while

𝑋 corresponds to that of the intact cross- sections. (C) Comparison between 3D printed creases dimensions taken

from microscope images and CAD files of case C8 with gradual reductions. Units: microns. Scale bar:1 mm. (D)

Mono-material cases M-1 and M-2. 6



𝑋̃ , respectively, while the intact cross-section and its rotational sti!ness are denoted as 𝑊 and 𝑋 .

As a result, the proposed variable creases geometry consists of a combined V+circular typology,

yielding a series of Kresling cell cases to be analyzed in terms of the parameters: 𝐿, 𝑂𝑃, 𝑀𝑁, and

𝑀. Thereby, we introduced eleven main cases, C1 to C11, derived from the variation of the width

with respect to the external thickness, expressed as the ratio 𝐿/𝑀=0.50, 0.60, 0.75, 0.90, 1.07,

1.20, 1.35, 1.50, 1.65, 1.80, 2.00. The gradual reductions applied to each of the main cases

are represented by the variations in internal thickness 𝑀𝑁, which directly depend on the reduction

factors, denoted as 𝑂𝑃= 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80. This process subdivided

each crease case into eight sub-cases, each corresponding to one of the specified 𝑂𝑃 values. The

load paths and stored energy landscapes of the generated geometrical combinations were obtained

through numerical simulations, as detailed in Supplementary Text S.2.2, using a multi-material

approach. A rigid photopolymer (VB), modeled as an elasto-plastic material, was assigned to the

panels. A rubbery photopolymer (DM60), modeled as a visco-hyperelastic material, was assigned

to the creases. For this, we incorporated viscoelastic parameters into its characteristic hyperelastic

behavior, such as the Prony series coe”cients (𝑌𝑁, 𝑍𝑁) and relaxation moduli (𝑎 (𝑏)), as explained in

sections 5.3, and S.1.3 of Supplementary Materials and Methods. Then, the e!ect of the gradual

reduction of the creases on the energy landscape was evaluated based on the variation of the width

w and internal thickness 𝑀𝑁 with respect to the external thickness 𝑀, denoted as the ratios 𝐿/𝑀 and

𝑀𝑁/𝑀, respectively.

Thereafter, in Fig. 2A, we show which geometrical combinations exhibited a bistable, or monos-

table behavior, along with their rotational sti!ness 𝑋̃ , estimated using the bending formulations

of an incompressible elastic Neo-Hookean block (44) (as detailed in Supplementary Text S.2.3).

For instance, the Kresling cells that satisfied the bistability criteria were made of wider creases

(1.07 ↑ 𝐿/𝑀 ↑ 2.00) and designed with greater cross-section reductions (0.58 ↔ 𝑀𝑁/𝑀 ↔ 0.05). The

latter were generated by reduction factors relying on the range 0.66 ↑ 𝑂𝑃 ↑ 0.80. Such reduction

factors enabled the creation of creases with the thinnest internal thicknesses 𝑀i, resulting in the

highest decrement of cross-section and rotational sti!ness up to 𝑊̃/𝑊=0.50 and 𝑋̃/𝑋=0.10 com-

pared to the corresponding intact creases, as shown in Fig. 1B. Therefore, this confirms that as the

crease becomes less sti!, it gains enough flexibility to ensure the achievement of bistability. On

the other hand, creases designed with reduction factors below 𝑂𝑃=0.66 reached greater internal
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Figure 2: Influence of the creases geometrical parameters on the energy landscape. (A) Parametric study of

creases to evaluate the achievement of bistability (Bi), or monostability (M), in terms of the variation of width (𝐿)

and internal thickness (𝑀𝐿) with respect to the external thickness (𝑀), reduction factors (RF) and Rotational Sti!ness

(𝑋̃). The crease-cutting radius limit determines the range of reduction factors necessary to maintain a circular shape

at the lower part of the crease. ’Limit Bi’: boundary between bistability and monostability determined experimentally.

Results are based on Kresling cells at 1:1 scale (x1). (B) Load paths and (C) stored energy (U) landscapes of case

C8 (𝐿/𝑀=1.50) at 3:1 scale (x3). The corresponding curves are presented in the following order 𝑂𝑃: 0.25, 0.33, 0.40,

0.50, 0.57, 0.66, 0.74, and 0.80. (D) Iterative process to adjust CAD dimensions, verify discrepancies with the real

dimensions of 3D-printed Kresling cells, and determine the corresponding adjusted load paths (FEAad).
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thickness (𝑀𝑁) values. They tend to increase the restoring force values of the respective Kresling

cells, gradually moving them away from zero. Therefore, they are unable to achieve bistability

and are prone to show a monostable behavior instead. Thus, we determined a possible limit for

achieving bistability from the combinations with 𝑂𝑃 ↔ 0.66, as shown in Fig. 2A.

In an extreme scenario, when the width versus external thickness ratio is below 𝐿/𝑀 ↑ 1.07,

the creases tend to be narrower and very rigid, falling into a mono-stable category, and when

they presented higher 𝑀𝑁 values, the stored energy values also increased. In general, we observed

that Kresling cells exhibited monostable behaviors when they are formed by sti!er creases. These

crease configurations reached reduction ratios of approximately 𝑊̃/𝑊 ↔ 0.70 for cross-sections and

𝑋̃/𝑋 ↔ 0.30 for rotational sti!ness. Moreover, we analyzed the load paths and the corresponding

stored energy obtained numerically for the intermediate case C8 (𝐿/𝑀=1.50), as shown in Fig. 2B,

and Fig. 2C. We compared two types of numerical simulations, the first considering the exact

cross-section dimensions from the CAD file and the second with the adjusted dimensions obtained

from the microscope characterization, indicated as FEA and FEAad, respectively. We also observed

that a second local minimum of energy was reached when the creases presented gradual reductions

between the range 0.40 ↔ 𝑀𝑁/𝑀 ↔ 0.35 corresponding to the already mentioned reduction factors

0.66 ↑ 𝑂𝑃 ↑ 0.80.

2.2 Scalability and experimental validation

Furthermore, we observed through numerical simulations that the load paths of the analyzed Kres-

ling cells can be scaled. For instance, Fig.3A shows that the position of the second local minimum of

energy of the C8 𝑂𝑃=0.80 Kresling cell, at a 1:1 scale (x1), varies from a displacement u=4.53 mm,

to 9.06 mm at a 2:1 scale (x2) and 13.59 mm at a 3:1 scale (x3). This fact demonstrates that scaled

Kresling cells maintained the expected bistable behavior at the same geometrical proportions with

respect to 1:1 scale (x1). Thus, Kresling cells can be scaled to meet manufacturing requirements

across di!erent length scales, from microfabrication to large-scale additive manufacturing. In the

present study, Kresling cells for the C8 case were fabricated using the PolyJet technique at a 3:1

scale (x3) for the corresponding experiments, as detailed in section 5.4. This scale ensures feasible

printing, as the internal thickness dimensions 𝑀𝑁, fall within the PolyJet manufacturing limits of
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0.6–1.0 mm.

The experimental setup for the compression tests is illustrated in Fig. 3B. The experiments were

performed by imposing a displacement 𝑐 at one side of the sample and leaving free the rotation in

the opposite side, as detailed in section 5.5. During the test we monitored the applied displacement 𝑐

against the measured restoring force 𝑃. Moreover, the achievement of bistability is highly sensitive

to geometric variations in crease parameters, such as width 𝐿 and internal thickness 𝑀𝑁. The existent

di!erences between the exact (CAD) and the real dimensions of the 3D printed Kresling cells are

attributed to the inherent loss of dimensional accuracy of the 3D printer in use.

Thorough a microscopic characterization (further explained in sections 5.6, and S.1.10 of

Supplementary Materials and Methods), we estimated a mean percentage error, MPE (%), between

the exact and the real dimensions of the analyzed creases and panels from a sample corresponding

to the case C8. In this example, the internal thickness 𝑀𝑁 dimensions exhibited an mean percentage

error in the range: -25 ↑ 𝑑𝑒𝑓 (%) ↑ 10, where negative values imply higher real measures than

the CAD models. This error range represents a small di!erence between the exact dimensions and

the real dimensions of the creases, and corresponds to the expected dimensional accuracy of a

J750 Polyjet 3D printer, which is commonly about 10%. Therefore, we primarily relied on the load

paths obtained from the numerical simulations (FEA) using the exact dimensions from the CAD

file geometry for their respective experimental validation, as shown in Fig. 3C, D and E.

Subsequently, we experimentally confirmed that C8 case samples with reduction factors in the

range 0.25 ↑ 𝑂𝑃 ↑ 0.57 exhibited monostability, as illustrated in Fig. 3C. These cases corresponded

to creases with internal thickness 𝑀𝑁 greater than the manufacturing limit of 1.0 mm. The e!ect of

crack formation during the experiments on these thicker creases was minimized. For this reason,

the numerical load paths (FEA) closely matched those obtained experimentally (EXP). In Fig. 3D,

the experiments from C8 cases with 0.74 ↑ 𝑂𝑃 ↑ 0.80 validated the bistable behavior observed in

the corresponding Kresling cells at a 1:1 scale, as described in Fig. 2A.

However, some discrepancies were observed in the load path region where a change in the

sign of the load was expected. This may be attributed to the fact that these narrow creases, with

thicknesses below the manufacturing limit of 0.6 mm, are prone to develop longitudinal cracks that

dramatically reduce their sti!ness. In addition, the load path corresponding to the configuration

with a reduction factor of 𝑂𝑃 = 0.66 may represent the actual limit between bistability and
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Figure 3: Scalability and experiments on multi-material 3D printed Kresling cells. (A) Observed scalability in

Load paths and in the position of the second local minimum of energy on Kresling cells, at a 1:1 (x1), 2:1 (x2) and

3:1 (x3) scales. (B) Experimental Setup for multi-material 3D printed Kresling cells at 3:1 scale, designed to impose a

vertical displacement 𝑐 corresponding to a restoring force 𝑃, with free rotation at one end. (C-E) Comparison between

Numerical and Experimental tests performed on case C8 with: (C) 𝑂𝑃 = 0.25, 0.33, 0.40, 0.50 and 0.57. (D) 𝑂𝑃 = 0.66,

0.74, and 0.80. (E) E!ect of the degradation of the rubbery crease cross-sections on the load path after performing

three sequential experiments on the same sample (C8, 𝑂𝑃=0.80 creases made of DM60).

monostability, denoted as ’Limit Bi’ in Fig. 2A. Its experimental load path tends to remain above

zero, making it di”cult to confirm whether the condition for achieving a second local minimum

of energy is truly satisfied, as shown by the corresponding numerical load path. A summary of the

experiments, including hands-on experimental validation of bistability, is presented in videos S1

and S2. Furthermore, we observed that sequential compression tests can induce degradation in the

rubbery photopolymer, resulting in longitudinal cracks along the creases, particularly in areas with

cross-sectional dimensions smaller than 0.6 mm. To investigate this, we performed the compression
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experiment three times on the same samples.

Gradual decreases in the load values achieved for sample RF = 0.80 were detected across

experimental curves denoted 1, 2, and 3, as shown in Fig. 3E, along with additional details in video

S3 and supporting Fig. S24. We determined that approximately 30% and 50% of the load capacity

achieved in test 1 was lost after tests 2 and 3, respectively.

2.3 E!ects of creases viscosity on bistability

In a second parametric study, we focused on the e!ects of viscosity on the bistability and stored

energy in Kresling cells composed of rubbery creases while preserving the same rigid panels.

Specifically, we analyzed the configurations of creases from cases C8 to C11, which led to bistabil-

ity during the first parametric study described in section 2.1. Those creases were modeled exclu-

sively with the rubbery material DM60, which has a relaxation modulus of G60=0.220 MPa. The

selected groups of creases are located within the following geometrical ranges: 0.05 ↑ 𝑀𝑁/𝑀 ↑ 0.41

and 1.50 ↑ 𝐿/𝑀 ↑ 2.00, as shown in Fig. 4A. We obtained the corresponding numerical load paths

and energy landscapes using various rubbery photopolymers characterized by di!erent relaxation

moduli and viscosity with respect to DM60, including AG30 (G↗=0.7G60), DM70 (G↗=1.4G60),

DM85 (G↗=2.6G60), and DM95 (G↗=3.9G60), as detailed in Supplementary Text S.2.4. Their vis-

coelastic properties, such as relaxation modulus (𝑎 (𝑏)) and Prony parameters (𝑌𝑁, 𝑍𝑁), were de-

termined experimentally (see Section S.1.6 of Supplementary Materials and Methods for more

details). As a result, Fig. 4A summarizes whether bistability is preserved in the geometrical config-

urations analyzed under various levels of relaxation modulus and viscosity. In addition, bistability

was numerically evaluated over di!erent time scales, considering the initial (𝑍→
𝑁
), short- (𝑍), and

long-term (n𝑍) relaxation times exhibited by the visco-hyperelastic materials analyzed, as indicated

in Fig. 4B.

Thus, we observed that Kresling cells composed of creases with a lower relaxation modulus,

characterized by the softest photopolymers AG30, DM60, and DM70, remained in bistable behavior

in the majority of cases and in all the analyzed time scales. Configurations whose reduction factors

are in the range within 0.74 ↑ 𝑂𝑃 ↑ 0.80 can also achieve bistability with rubbery materials having

an intermediate relaxation modulus, such as that of DM85. However, in cases where geometrical
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configurations are at the limit of achieving bistability, which are generated with a reduction factor

RF=0.66 and when using DM85, a monostable scenario occurred. On the other hand, we inferred

that at the highest relaxation modulus and viscosity, for instance DM95 material, the Kresling

cell tends to exhibit monostability in most cases. Consequently, we estimate that as the rubbery

material in the creases becomes more highly viscous, with a high relaxation modulus, the load

values consistently stay above zero, and the sample tends to return to its initial state, compromising

a bistable behavior.

2.4 Experiments on Kresling Cells with variable visco-hyperelastic creases

We selected the configurations of the case C8 𝑂𝑃=0.80 to experimentally validate their bistable

behavior previously described in Fig. 4A. For this, we compared their numerical and experimental

load paths and stored energy landscapes, as illustrated in Fig 4C. The fabrication of the samples

and the experiments were done as detailed in sections 5.4 and 5.5, respectively. We confirmed

experimentally that bistability is maintained by Kresling cells made of creases with the less sti!

rubbery materials and characterized by lower relaxation moduli, such as AG30, DM60, DM70,

and the intermediate, DM85. Similarly, Kresling cells with creases made of DM95, which has

the highest relaxation modulus among the analyzed rubbery materials, lost the ability to achieve

bistability in practice. Instead, the Kresling cell transitioned to a monostable scenario, where the

load values tend to deviate further from intersecting the displacement axis at zero force. Then,

a corresponding rise in stored energy is observed without reaching a second local minimum of

energy. This occurs despite the fact that the geometrical design favors bistability when using softer

materials with lower relaxation moduli. We can attribute this to the fact that the rubbery material

DM95 is more likely to exhibit higher viscosity than the other photopolymers and retain sti!ness

over time, making even the folding of the Kresling cell more di”cult. Consequently, we observed

that variations in relaxation modulus can aid in tuning the energy landscapes, as well as modifying

the geometrical parameters of the creases.

The experiments were conducted similarly to those described in section 2.2 and included

hands-on experimental validation of bistability, as shown in video S4. We also detected crack

initiation along the creases made of other rubbery materials di!erent from DM60, including
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Figure 4: Visco-hyperelastic e!ects on the achievement of bistability. (A) Parametric study to assess bistable Kresling

cells with creases made of rubbery materials (AG30, DM60, DM70, DM85 and DM95) with di!erent viscoelastic

properties in terms of relaxation modulus 𝑎↗, for Cases C8, C9, C10, and C11 designed with reduction factors within

the ranges 0.66 ↑ 𝑂𝑃 ↑ 0.80. Results of Kresling cells at 1:1 scale (x1). (B) Experimental relaxation curve. Times

𝑍
→
𝐿 , 𝑍 and n𝑍, respectively considered for the numerical analysis of viscosity e!ects. Experiments were performed at

a test speed which correspond to a relaxation time 𝑍
→
𝐿 =180 s. (C) Numerical and experimental load paths, along with

stored energy landscapes (U). Results for C8 RF=0.80 cells at a 3:1 scale (×3), with rubbery creases exhibiting di!erent

relaxation moduli. Filled regions include FEA simulations within the range 𝑍
→
𝐿 ↑ 𝑍 ↑ 𝑔𝑍.
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AG30, DM70, DM85 and DM95, in the tested Kresling cells. This a!ected the accuracy of the

experimental load paths with respect to the corresponding numerical counterparts, as we observed

in the experiments shown in Fig. 3D. Likewise, degradation in the creases was noted after testing

each sample consecutively three times, representing a technological limitation related to the use of

rubbery photopolymers with very small cross-sections (↑0.6 mm), as further detailed in supporting

Fig. S33.

2.5 Mono-material cells

In the context of the multi-material 3D printing approach, the compression/expansion process of

Kresling cells, as well as the achievement of bistability, becomes feasible by combining the bending

of rigid panels and rubbery creases. In the case of using a single material, we propose a strategy

in which we segmented the creases and create voids along the full volume of the valleys (𝑕𝑖 𝑗 ),

and peaks (𝑕𝑘 𝑗 ), as shown in Fig. 5A and B. This di!erence in volume contributed to reduce the

sti!ness of the creases with respect to the panels. Then, the analyzed Kresling cells, denoted as M-1

and M-2, are designed with the geometrical configuration of case C11 RF=0.80. We selected this

configuration because it potentially exhibits bistability, independently of the viscoelastic properties

of the creases materials, as described in Section 2.3. The variable volume of the valley creases

is denoted as 𝑕𝑖. In the M-1 case, where the number of voids along the valleys is zero, and their

volume is 𝑕𝑖 = 𝑕𝑖 𝑗 . In M-2 case, the number of voids along the valleys is 2, and their volume is

equal to 𝑕𝑖=3/5 𝑕𝑖 𝑗 .

In both Kresling cell cases M-1 and M-2, the reduction of the peaks volume was also considered

as a minimum fraction of their respective full volume, denoted as 𝑕𝑘=2/7 𝑕𝑘 𝑗 . The remaining small

amount of material that forms the peaks, only contributes to the connection between the panels. Thus,

we simplify the analysis by regarding the volume of the valleys𝑕𝑖 with their voids inclusions, as the

sole variable of analysis. The load paths and energy landscapes corresponding to M-1 and M-2 cases

are shown in Fig. 5A and B. They indicate that both Kresling cells, made completely of rubbery

photopolymers such as Origin 402, IP-PDMS, and DM95, exhibited a monostable behavior. In

addition to these materials, the use of photopolymers with a sti!ness of around 600 MPa, like UTL,

suggests that monomaterial Kresling cells can also achieve bistability. This type of photopolymers
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are used in micro-printing being characterized by high-flexibility and toughness, suitable for snap-

fits or similar fixtures. Additional results with rubbery photopolymers, including DM60, DM70,

and DM85, are presented in Supplementary Text S.2.5.

2.6 Programmable Monostable Kresling Assemblies

The variation of geometrical parameters in Kresling cells, such as initial relative angle 𝑄𝑅 and the

aspect ratio between the initial height and the polygon’s radius 𝑇𝑅/𝑈, can lead to programmable

energy absorption levels. We analyzed the following mono-stable Kresling cell configuration:

number of polygon’s sides n=8, 𝑄𝑅 = 45↘, and 𝑇𝑅/𝑈=0.40, determined using the same criteria as

the previously analyzed configuration with n=6. Next, 3D parametric Kresling cells were designed

and coupled in chiral configurations to form multi-story cylinders with five stories (#𝑀𝑏𝑅𝑈𝑁𝑙𝑀=5). In

this analysis, we aimed to explore the crucial role of crease sti!ness in the compression/expansion

process and storing energy in multi-story and monostable Kresling cells.

These structures were numerically analyzed in Abaqus/CAE standard to determine their load

paths and energy landscapes during compression, as detailed in section 5, and were validated

experimentally, as described in section 5.5 and video S5. A vertical displacement was applied at

the top, while the bottom is fixed, as shown in Fig. 5C. The Kresling multi-story cylinders were

designed for fabrication using multi-material 3D printing, with rigid panels (VB), and creases

made of softer (DM60) and sti!er (DM95) rubbery materials. Thereafter, we generated three

di!erent cases to specifically evaluate the influence of creases with variable sti!ness: (i) creases

made entirely of the softer rubbery material DM60 across all five stories, (ii) sti!er creases in

the even stories (DM60-DM95-DM60-DM95-DM60), and (iii) sti!er creases in the odd stories

(DM95-DM60-DM95-DM60-DM95).

During the folding of the multi-story cylinders, the numerical load paths were tracked until

the contact between panels started, reaching a displacement in the range of 12 mm ↑u↑16 mm.

We calculated the stored energy at these points. Using the value from case (i) as a reference, we

observed increases of 59.15% and 139.05% with the inclusion of sti!er creases, as seen in cases (ii)

and (iii), respectively. Moreover, considering the intermediate stories 2, 3, 4 as points of analysis,

we observed that all the stories are folded uniformly in the case (i), where creases are made of
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Figure 5: Load paths and stored energy landscapes of monomaterial Kresling cells and programmable Kresling

assemblies. (A) M-1, and (B) M-2 cases. Materials with intermediate sti!ness tend to achieve bistability (Bi). Results

of Kresling cells at 1:1 scale. (C) Compression test and folding process of cases (i) All the creases DM60, (ii) Sti!er

creases (DM95) in the even stories, and (iii) Sti!er creases (DM95) in the odd stories. The number of folded stories at a

displacement u≃ 12mm is indicated. (D) Numerical (FEA) and experimental (EXP) results. The numerical simulations

stopped at the first contact among panels.
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the same material DM60. On the alternating creases sti!ness cases, stories with creases made of

softer material tended to be folded first than their rigid counterparts. For instance, the odd story 3

(DM60) in case (ii), was folded first than the even stories 2 and 4 made of sti!er material (DM95)

and vice-versa in case (iii), as described in Fig. 5D. Hence, we proposed another approach for the

programmability of stored energy and to control the localized deformation of specific stories during

the folding process of multi-story Kresling structures. Therefore, we aimed to provide design hints

for 3D printed structures that could potentially be employed in programmable motion and damping

devices.

3 Discussion and Limitations

Starting with a Kresling cell configuration (n=6, 𝑇𝑅/𝑈=1.75, 𝑄𝑅 = 𝑆/6), along with the proposed

gradual reduction of the creases cross sections, we conducted numerical simulations to obtain the

corresponding load paths and energy landscapes. Traditional modeling approaches for Kresling

structures typically involve thin-shell elements primarily intended for physical prototypes made

from paper-based or thin polymer sheets. However, using 3D hybrid-modified elements enabled us

to incorporate visco-hyperelastic models, providing a more realistic mechanical response for viscous

and nearly incompressible materials, such as the flexible photopolymers used in 3D printing. Under

the assumptions of paper-based models, such as constant crease cross-sections and zero viscosity,

predictions of mechanical behavior di!er when applied to 3D-printed Kresling cells. For example,

the design of an intact rubbery crease is more likely to not exhibit the theoretically predicted

bistability. For multi-material 3D printing Kresling cells, we established a range of geometrical

parameters, including width-to-external thickness ratio 𝐿/𝑀, internal thickness 𝑀𝑁, and reduction

factor RF, leading to parametric design process to obtain bistable cells. Based on the results of the

parametric study, we have confirmed that the geometry of the creases is influential when aiming a

specific load path.

Particularly, when the crease width 𝐿 exceeds a ratio 𝐿/𝑀 ↔ 1, the energy landscapes of

the multi-material 3D-printed Kresling cells can be significantly controlled by modifying the

internal thickness 𝑀𝑁 using imposed reduction factors 𝑂𝑃, while maintaining the same width w. For

example, we demonstrated that the internal thickness 𝑀𝑁 is a critical factor in achieving bistability.
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Specifically, values in the range 0.30 ↑ 𝑀𝑁/𝑀 ↑ 0.05 generated by reduction factors 𝑂𝑃 between

0.74 and 0.80, ensure bistability while reducing the cross-section relative to the intact cross-section

by an approximate ratio of 0.60 ↔ 𝑊̃/𝑊 ↔ 0.50. Consequently, the rotational sti!ness of the

reduced creases relative to the intact crease decreases to a range of 0.20 ↔ 𝑋̃/𝑋 ↔ 0.10, ensuring

the flexibility required for bistable Kresling cells. In contrast, Kresling cells generated with 𝑂𝑃

values below 0.66 tended toward monostable behavior in practice. In these cases, we observed that

the experimental load path remains above zero, which di!ers from the numerical counterpart’s

prediction. Furthermore, we noted that, after applying a compressive load to the Kresling cell, it

returned to its initial configuration more quickly, as shown in video S2. Thus, we confirmed that

bistability was not achieved in practice.

For this reason, we established a reduction factor 𝑂𝑃=0.66 as a geometric limit for determining

bistability. This discrepancy may be due to slight increases in cross-sectional dimensions resulting

from printing accuracy, potentially leading to a greater thickness, 𝑀𝑁, and closer to that of the next

case with 𝑂𝑃 = 0.57. Although taking measurements along the crease length is complicated due

to the complex geometry of the Kresling cell, the fact of having such a greater crease thickness is

confirmed by the microscopic measurements we performed along an horizontal slicing plane that

cuts the Kresling cell at the mid-height.

We numerically and experimentally determined how the achieved bistability is a!ected by the

visco-hyperelastic behavior characteristic of rubbery 3D printing materials. For example, in the par-

ticular case of C8 Kresling cells with creases made of rubbers with lower (AG30, DM60, DM70) and

intermediate (DM85) relaxation moduli preserved bistability. Considering DM60 relaxation mod-

ulus as G↗=1.0G60, we have AG30 (G↗=0.7G60), DM70 (G↗=1.4G60) and DM85 (G↗=2.6G60).

In contrast, when the creases were characterized by a higher relaxation modulus such as the case

of DM95 material (3.9 G60), the Kresling cells transitioned towards a monostable behavior. Our

numerical simulations also predicted that bistability is preserved over di!erent time scales corre-

sponding to the initial (𝑍→
𝑁
), short- (𝑍), and long-term (n𝑍) relaxation times. Since numerical

simulations showed that the energy landscapes did not vary significantly for relaxation times higher

than 𝑍𝑁, we decided to perform them a test speed which correspond to a relaxation time 𝑍
→
𝑁
=180 s.

This choice allows for e”cient characterization while avoiding unnecessary long-term testing, as

the observed bistability remains over time. When comparing visco-hyperelastic creases made of

19



di!erent rubbery materials, the viscoelastic component, specifically the di!erence in relaxation

modulus, appeared to have a greater e!ect on achieving bistability than the time scale of anal-

ysis. Furthermore, these results suggest that specific geometrical parameters leading to creases

with smaller cross-section thickness 𝑀𝑁, such as those generated with a reduction factor RF=0.80,

play a more significant role in the achievement bistability and programming the energy landscape,

counteracting the inherent viscoelastic e!ects.

In the case of a monomaterial approach, the geometrical designs with the narrowest creases

(especially those generated with a reduction factor 𝑂𝑃=0.80) were selected, as they provide the

highest rotational sti!ness reduction 𝑋̃/𝑋 ≃ 0.10 and flexibility. Our design strategy was based

on variations in sti!ness along the creases, achieved through the inclusion of voids in the peaks and

valleys, which facilitated the compression and expansion processes of the Kresling cell. Regardless

of the material used, we also evidenced that decreasing the volumes of the creases by including more

voids along the valleys, can modify the energy landscapes resulting in lower stored energy values.

These di!erences can be observed by comparing the energy landscapes corresponding to the cases

M-1 in Fig. 5A and M-2 in Fig. 5B. For example, considering both cases made of UTL resin, M-1

and M-2, their achieved total stored energy values were U=32 mJ and U=26 mJ, respectively. This

means that the inclusion of two voids along the valleys, corresponding to the fraction 𝑕𝑖=3/5 𝑕𝑖 𝑗 ,

can result in a decrease of 18.75% in the total stored energy.

Since rubbery photopolymers exhibit low tensile instantaneous relaxation moduli between

1.0MPa ↑ 𝑓𝑅 ↑ 10MPa, the e!ect of their visco-hyperlastic properties on preserving bistability

is almost not mitigated without the interaction with sti!er panels. On the other hand, very rigid

photopolymers led to earlier failure, tending to present a brittle behavior, and the folding mechanism

is limited. For this reason, materials with intermediate sti!ness values can be an alternative for

achieving bistability. We have confirmed this fact by analyzing a Kresling cell composed of UTL

resin (45), with a Young’s Modulus around E ≃ 600 MPa, where bistability was observed. Therefore,

it opens the possibility of miniaturizing bistable Kresling cells using a single material. These

configurations can be used to fabricate downscaled Kresling cells, even at the micro-scale, thereby

overcoming the dimensional limitations of traditional 3D printing technologies.

In addition, we investigated the role of creases in monostable Kresling assemblies. Using a

multi-material printing approach, we evaluated and fabricated Kresling structures with variable
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sti!ness assigned to the creases in even and odd stories. For instance, during the folding process,

deformation occurs first in the stories with softer creases, such as those made of DM60, and later

in the sti!er ones made of DM95. This approach facilitates the control and programming of the

energy landscape. Notably, we also achieved an increase of up to approximately 140% in stored

energy by including sti!er creases.

3.1 Limitations

We validated the numerical predictions experimentally, considering manufacturing limitations

to prevent defects at the time of fabricating 3D-printed parts. Dimensional constraints due to

technological limitations restrict the size of 3D-printed multi-material Kresling cells that can be

tested. In the case of the PolyJet technique, load-bearing elements with cross-sections smaller than

0.6 mm tend not to cure well and may exhibit defects during the photopolymerization and layer

deposition processes. However, considering cross-sections above 1.0 mm helps reduce defects and

they remain intact during post-processing operations (42). During subsequent compression tests

on Kresling cell samples, we observed a reduction in sti!ness and peak loads of 30% after the

second test and 50% after the third test. This can be attributed to crack initiation in thin creases

made of rubbery photopolymers. This suggests material degradation in thin cross-sections made

of the rubbery material after repeated loading cycles, potentially compromising its suitability for

long-term applications. This observation highlights potential limitations in the reliability of this

technique for experiments on multi-material Kresling cells, indicating potential long-term durability

concerns. However, fabricating on a larger scale could be an option to overcome these manufacturing

dimensional limitations, although it might result in higher material costs and longer working times.

4 Concluding remarks

We proposed alternatives to explore the untapped engineering potential of Kresling origami beyond

traditional paper models. The advent of 3D printing has enabled the creation of complex multistable

structures with programmable energy landscapes inspired by Kresling patterns. However, this

approach also faces unique challenges related to manufacturing and material limitations, especially

at small scales and when addressing the visco-hyperelastic nature of photopolymers.
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Our study emphasized the critical role of crease design in achieving reliable multistability

in Kresling cells, highlighting overlooked parameters such as crease geometry and viscosity. By

modifying the crease cross-section, we obtained diverse energy landscapes ranging from bistability,

to monostability.

For instance, reducing the crease internal thickness 𝑀𝑁, through proposed reduction factors RF, by

over 50% of the intact cross-section facilitated bistability, as confirmed by experimental validation

that accounted for manufacturing limitations and scalability considerations. Rubbery creases with

the highest relaxation modulus (𝑎↗ ≃ 0.855MPa) compromised bistability, while those with lower

relaxation moduli preserved it. In addition, the observed bistability remained over di!erent time

scales, including the initial, short- and long-term relaxation times regions. Consequently, we found

that the di!erence in relaxation modulus had a greater impact on bistability than the time scale

of analysis. Our results further indicate that the most significant changes in the energy landscape

were primarily attributed to modifications in the geometrical parameters of the crease cross-

section, which contributed to limiting the influence of visco-hyperelastic e!ects, especially in the

configurations with the smallest cross-sections generated with a reduction factor RF=0.80.

Considering a monomaterial approach, sti!ness variations achieved through voids in crease

geometry improved the compression and expansion of Kresling cells and allowed energy storage

to be tailored. Materials with intermediate sti!ness (E ≃600MPa) were identified as optimal for

foldable, bistable designs, particularly oriented to micro-fabrication.

Moreover, we explored the role of creases in monostable Kresling assemblies by varying their

sti!ness. This allowed us to control the deformation of specific stories, enabling programmable

energy landscapes and adjustable energy storage based on the inclusion of softer or sti!er creases.

In summary, our findings address key 3D printing challenges and o!er potential for applications

such as customized and scalable energy absorbers, actuators, and delivery robots that rely on

compact and programmable energy landscapes. These configurations advance our understanding

of Kresling-origami-inspired structures while also paving the way for future research.
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5 Materials and Methods

5.1 Initial Sizing of Kresling cells

The geometrical parameters that define the initial sizing configuration of the Kresling cells were

estimated using a five-parameters model (26), as further detailed in section S.1.1 of Supplementary

Materials and Methods. Considering a Kresling cylinder defined by top and bottom polygons with

a number of sides n=6, under an axial displacement 𝑐, the total elastic stored energy of the creases

𝑚 can be defined by the sum of the deformation strain𝑚𝑛 and the rotational springs𝑚𝑀 contribution

of the peak and valley creases, by using the expressions:

𝑚𝑛 =
1
2
𝑔𝑋𝑀𝑛 (𝑛 ⇐ 𝑛𝑅)2 + 1

2
𝑔𝑋𝑀𝑉 (𝑉 ⇐ 𝑉𝑅)2

, (1)

𝑚𝑀 =
1
2
𝑔𝑋𝑜 (𝑝𝑜 ⇐ 𝑝𝑜𝑅)2 + 1

2
𝑔𝑋𝑛 (𝑝𝑛 ⇐ 𝑝𝑛𝑅)2 + 1

2
𝑔𝑋𝑉 (𝑝𝑉 ⇐ 𝑝𝑉𝑅)2

, (2)

𝑚 = 𝑚𝑛 +𝑚𝑀 (3)

Here, 𝑋𝑀𝑛 and 𝑋𝑀𝑉 represent the stretching sti!ness of the creases, while 𝑛 and 𝑉 denote the final

lengths during the compression/expansion corresponding to the peaks and valleys, respectively. The

original peak and valley lengths are denoted as bo and 𝑉𝑅, respectively. The terms 𝑋𝑜, 𝑋𝑛, and 𝑋𝑉

represent the rotational sti!ness of the creases. The dihedral angles in the original configuration are

𝑝𝑜𝑅, 𝑝𝑛𝑅, 𝑝𝑉𝑅, while those in the folded configuration are 𝑝𝑜, 𝑝𝑛, 𝑝𝑉, corresponding to their respective

creases. An iterative process was performed applying Eq.3 to select the initial sizing configuration

that theoretically leads to a second local minimum of energy when 𝑝𝑚/𝑝𝑐=0 (46,47).

5.2 Parametric Design

The cylindrical Kresling cells were designed as solid bodies in Autodesk Inventor in 1:1 scale

(x1), following the initial sizing configuration: polygons with n=6 sides, rotating at an initial angle

𝑄𝑅 = 𝑆/6 with respect to each other, and an aspect ratio 𝑇𝑅/𝑈=1.75. The panels were modeled with

a small thickness value with respect to the initial height (0.04 𝑇𝑅↑ 𝑀 ↑ 0.08 𝑇𝑅). In addition, rings

were included at the top and bottom of the cylinders to ensure a uniform rotation of the upper and
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lower polygons. Moreover, we created a small gap at the top and bottom intersections of the creases

with the rings to prevent stress concentrations, as illustrated in the 3D Kresling cell renders from

Fig. 3A.

In the Multi-material approach, the creases of the Kresling cells were parametrically designed

with dimensional and geometrical variations. The dimensionless ratio w/s represents the creases

width, w, variation relative to its thickness, s, ranging within 0.50 ↑ 𝐿/𝑀 ↑ 2.00, and being grad-

ually reduced considering the reduction factors 0.25 ↑ 𝑂𝑃 ↑ 0.80. The generated configurations

were obtained by combining the mentioned parameters and they are detailed in section S.1.2 of

Supplementary Materials and Methods.

In the Mono-material approach, the Kresling cells were similarly designed following the initial

sizing configuration and incorporating the creases design from the case C11 RF=0.80. The latter

represents the most flexible crease with the lowest rotational sti!ness (𝑋̃= 1.26x10-5 N.mm/rad).

The voids inclusions along the peaks and valleys, corresponded to a fraction of the total volume of

their respective full creases, as explained in section 2.5. Thereby, multiple Kresling cell configura-

tions for Multi-material and mono material approaches were exported as *.step and *.𝑞𝑛 Parasolid

files, for the respective numerical simulations and 3D printing, respectively.

5.3 Numerical simulations and constitutive models

Quasi-static non-linear analyses were carried out in Abaqus/CAE Standard meshing the systems

with quadratic tetrahedron C3D10MH elements due to the complexity of the geometry. This

type of mesh contains 10 node quadratic tetrahedron with hybrid modified constant pressure

elements. This choice was dictated by the hyperelastic nature of the rubbery material which is

nearly incompressible. Tie constraints were assigned to the panels, creases, top and bottom ring

surfaces to create a uniform contact among them. The defined boundary conditions at the bottom of

the cylinder constrained all the displacements and the rotations. An imposed vertical displacement

close to the one third of the initial height (≃ 1/3 𝑇𝑅) was applied at the top.

Simultaneously, the rotation of the upper part was also released to simulate the natural twisted

motion, characteristic of the Kresling patterns along with a compressive force. Furthermore, we

remark that the quasi-static simulations were conducted using a VISCO step to capture the time-
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dependent behavior of the visco-hyperelastic elements. The simulations proceeded until the target

displacement was reached, ensuring that while the panels made initial contact during the folding

process, overlapping was prevented. Further details are explained in section S.1.3 of Supplementary

Materials and Methods. Moreover, we incorporated calibrated material models obtained from their

respective material characterization tests, as described in section S.1.5 of Supplementary Materials

and Methods. The components made of rigid materials, such as the panels and rings, were modeled

with an elasto-plastic behavior. In contrast, flexible photopolymers were assigned to the creases,

being initially characterized by a Neo-Hookean strain potential energy function described as follows:

𝑚𝑟 = 𝑠10(𝑡1 ⇐ 3) (4)

where 𝑠10=𝑎𝑅/2, being 𝑎𝑅 the instantaneous shear modulus and 𝑡1 is the first stretch invariant.

This hyperelastic model assumes an almost incompressible material and was fitted to experimental

data to find the𝑠10 coe”cients, which define the rate-independent behavior (48). Subsequently, the

viscoelastic e!ects of the rubbery materials were then incorporated into the hyperelastic model. The

Prony parameters dimensionless weight 𝑌𝑁 and relaxation time 𝑍𝑁 characterize the time-dependent

behavior associated with viscosity (49). They were determined by a non-linear regression analysis by

fitting them to the relaxation test data, as detailed in section S.1.6 of Supplementary Materials and

Methods. We then applied the obtained Prony parameters to the constants within the strain energy

function 𝑚𝑟 (𝑏), which is defined by the instantaneous constant 𝑠𝑅

10, and the visco-hyperelastic

relaxation function can be expressed as follows:

𝑚𝑟 (𝑏) = 𝑠
𝑅

10

(
1 ⇐

𝑟∑
𝑁=1

𝑌𝑁 (1 ⇐ 𝑙
⇐𝑏/𝑍𝐿 )

)
(5)

In the context of Polyjet photopolymers, the selected rigid material for the panels in all the

numerical simulations of multi-material cases was VeroBlack (VB). Regarding the flexible creases,

the rubbery digital material DM60 was used for the first parametric study (section 2.1). In subsequent

analyses, we included additional rubbery photopolymers with di!erent relaxation moduli and

viscosity than DM60, such as Agilus30 (AG30) and digital materials DM70, DM85, and DM95,

to evaluate and predict the e!ects of viscosity on bistability (section 2.3). The duration of each

numerical simulation using the VISCO step, was set equal to the initial, short-term and long-term

relaxation times exhibited by the di!erent rubbery materials, based on their relaxation times 𝑍𝑁 from
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the Prony series. For the mono-material approach, flexible photopolymers used in other 3D printing

techniques were also considered, including Origin 402 (Direct Light Processing), IP-PDMS and

UTL-BMF (Two-photon polymerization for micro-fabrication).

5.4 Fabrication of Multi-material Kresling cells

The Kresling cell samples were fabricated following the framework of Polyjet multi-material

technique. It is important to remark that cross-sections of structural elements lower than 1.0 mm

demand special attention during the Polyjet process. They are prone to exhibit defects and demand

extremely careful post-processing operations. For this reason, the printed Kresling cells were scaled

three times to make the printing feasible, maintaining the ratios and proportions previously detailed

in the parametric design section 5.2, video S6 and section S.1.2 of Supplementary Materials and

Methods. Based on the materials we used in the numerical simulations, the panels were fabricated

with VeroBlack (VB). For the creases, the following flexible materials were employed in the di!erent

Kresling cells: AG30, DM60, DM70, DM85 and DM95.

The 3D CAD models were generated in Autodesk Inventor, to be subsequently printed in

a Stratasys J750 printer series. The selected printing setting was High-Mix mode with a layer

resolution thickness of 27 microns and glossy surface finishing. The majority of the supports grids

made of SUP706B material surrounding the printed Kresling cells were manually removed, and

briefly rinsed in water for less than five minutes. A prolonged contact between small elements or

multi-material interfaces, lower than 1.0 mm cross-section, with water or alkaline solutions lead

to a premature breakage and detachment. Further details on the fabrication of 3D printed Kresling

cells protocol are presented in section S.1.7 of Supplementary Materials and Methods.

5.5 Experimental validation

A series of quasi-static experiments were carried on the 3D printed Kresling cells to validate

the numerical simulations results. A compression load was applied at the top with an imposed

displacement of approximately 𝑐 ≃ 1/3 𝑇𝑅. The experimental setup, described detail in section

S.1.8 - Fig. S10 of Supplementary Materials and Methods, consists on a fixture that resembles free

rotation assigned to the top of the sample, with a fixed bottom fixture to prevent displacements

26



and rotations. Thus, replicating the natural twist under compression inherent in Kresling patterns

kinematics (26). The connections between the sample and the setup were implemented in two

di!erent systems: (i) A female-male pinned system, and (ii) Use of magnets to prevent the sliding

of the samples. The cross-head testing speed was 0.1 mm/sec, which can be considered su”ciently

slow to capture viscosity e!ect (relaxation time 𝑍
→
𝑁
= 180 s), as well as the most representative

bistable behavior according to numerical predictions across di!erent time scales.

5.6 Microscopic characterization of 3D printed creases

The real dimensions of the 3D printed samples were determined via a stereo microscope (Nikon

SMZ800) equipped with an ED Plan 1.5x lens and with a DS-Ri2 camera. The analyzed creases be-

long to the configurations presented in case C8 with gradual reductions between 0.25 ↑ 𝑂𝑃 ↑ 0.80.

We compared the mean values of the real measurements of the 3D printed Kresling cells, versus the

exact measurements of the CAD models, as detailed in section S.1.10 of Supplementary Materials

and Methods. Thus, we determined the mean percentage error, 𝑑𝑒𝑓 (%) between the dimensions

from the tested samples and those used in the numerical simulations. Hence, this estimated error

was incorporated to update the analyzed geometrical configurations and considering the loss of

dimensional accuracy attributed to the Polyjet printing process.
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S.1 Materials and Methods

S.1.1 Initial sizing of Kresling cells

We determined an initial geometrical configuration of the Kresling cell that could potentially exhibit

bistability. The approach relied on a five-parameters model incorporating the elastic deformation of

stretchable mountain and valley creases (14,46) with their rotational behavior (26). As illustrated in

Fig. S1A, we first considered the following initial geometrical parameters: an initial height denoted

by 𝑇𝑅, upper and lower polygons with n sides circumscribed within a radius 𝑈, an initial relative

angle 𝑄𝑅 between these polygons. The original lengths of the creases, denoted by 𝑜𝑅 (side of the

polygon), 𝑛𝑅 (peaks), and 𝑉𝑅 (valleys), and their corresponding dihedral angles 𝑝𝑜𝑅, 𝑝𝑛𝑅, and 𝑝𝑉𝑅,

can be calculated using the expressions:

𝑜𝑅 = 2𝑈 sin
(
𝑆

𝑔

)
(S1)

𝑛𝑅 =

√
4𝑈2 sin2

(
𝑄𝑅

2

)
+ 𝑇

2
𝑅

(S2)

𝑉𝑅 =

√√√√√√√
4𝑈2 sin2 ,--

.
𝑄𝑅 +

2𝑆
𝑔

2
/

+ 𝑇

2
𝑅

(S3)

𝑝𝑜𝑅 = arctan
𝑇𝑅

2𝑈 sin
(
𝑄𝑅

2

)
sin

(
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2
+ 𝑆

𝑔

) (S4)
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When the compressive load 𝑃 is applied to the top of the Kresling cell, it produces an axial

displacement 𝑐 and a twisting rotation 𝑢 between the upper and lower polygons, while the final

height of the Kresling cell becomes h, as shown in Fig. S1A. Furthermore, the length of the crease
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Figure S1: Initial sizing of the Kresling cell. (A) Kresling cell geometrical parameters during compression/expansion

process. (B) Initial assessment of monostable (M) and Bistable (Bi) configurations through a five-parameters model,

by considering their initial relative angle 𝑄𝑁 and aspect ratio ho/r and rotational versus stretching sti!ness ratio K/Ks.

(C) Normalized Force (F) and Energy (U) plots versus normalized displacement u/r of the configuration 𝑄𝑁 = 30𝑁 and

ho/r=1.75.
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corresponding to the side length of the polygon 𝑜𝑅 remains constant with negligible deformation, as

it remains circumscribed within the polygon’s circle of radius 𝑈. At this stage, it can be considered

that 𝑜 = 𝑜𝑅, and the lengths of the creases corresponding to the peaks, 𝑛, and valleys, 𝑉 with their

respective dihedral angles 𝑝𝑜, 𝑝𝑛, and 𝑝𝑉 are defined as follows:

𝑛 =

√
4𝑈2 sin2

(
𝑢

2

)
+ (𝑇𝑅 ⇐ 𝑐)2 (S7)
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During the compression process, the total elastic energy stored in the creases, denoted as 𝑚,

can be calculated as the sum of the deformation energy of the peaks and valleys, 𝑚𝑛, and the

contribution from the rotational springs of the creases, 𝑚𝑀, as given by the following expressions,

which are defined by five parameters: 𝑛, 𝑉, 𝑝𝑜, 𝑝𝑛 and 𝑝𝑉.

𝑚𝑛 =
1
2
𝑔𝑋𝑀𝑛 (𝑛 ⇐ 𝑛𝑅)2 + 1

2
𝑔𝑋𝑀𝑉 (𝑉 ⇐ 𝑉𝑅)2 (S12)

𝑚𝑀 =
1
2
𝑔𝑋𝑜 (𝑝𝑜 ⇐ 𝑝𝑜𝑅)2 + 1

2
𝑔𝑋𝑛 (𝑝𝑛 ⇐ 𝑝𝑛𝑅)2 + 1

2
𝑔𝑋𝑉 (𝑝𝑉 ⇐ 𝑝𝑉𝑅)2 (S13)

𝑚 = 𝑚𝑛 +𝑚𝑀 (S14)
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Here, 𝑋𝑀𝑛 and 𝑋𝑀𝑉 represent the stretching sti!ness of the peaks and valleys, respectively, while

the rotational sti!ness of the creases is represented by 𝑋𝑜 for the side polygon, 𝑋𝑛 for the peaks,

and 𝑋𝑉 for the valleys. The total potential energy in the Kresling cell, ω(𝑐) , can be determined by

the sum of the total elastic energy stored in the creases 𝑚, and the work done by the external force

F that produces an axial displacement 𝑐:

ω(𝑐) = 𝑚 ⇐ 𝑃𝑐 (S15)

If we adhere to the principle of minimum total potential energy, we can identify an equilibrium

state (47). Thus, we assume that:

𝑝ω/𝑝𝑐 = 0 (S16)

Then, we can define the applied axial force 𝑃, under the mentioned equilibrium conditions and

in terms of the total elastic energy stored energy in the creases, as follows:

𝑃 = 𝑝𝑚/𝑝𝑐 (S17)

The previously mentioned equations enabled a preliminary evaluation of various geometrical

configurations to determine the initial sizing of a Kresling cell. The energy landscapes calculated

from Eq. S14, determined which initial geometrical parameters can be used to shape Kresling cells

prone to ensure a second local of energy minimum and satisfying the condition 𝑝𝑚/𝑝𝑐 = 0, for

further analyses. The geometrical configurations considered in this preliminary assessment include:

aspect ratios 𝑇𝑅/𝑈 within the range of 0.4 to 2.25, polygons with a number of sides equal to n=6 and

initial rotational angles 𝑄𝑅 ranging from 𝑆/4𝑔 to 3𝑆/𝑔 (7.5↘ ↑ 𝑄𝑅 ↑ 90↘). The total elastic energy

stored in the creases 𝑚, and axial displacement 𝑐, were normalized to represent dimensionless

quantities in the plots.

The stretching sti!ness 𝑋𝑀 is defined in terms of Young’s modulus 𝑓 , and cross-sectional area

𝑊 as 𝑋𝑀 = 𝑓𝑊. By defining the stretching sti!ness of the peaks and valleys per unit length, we

obtain 𝑋𝑀𝑛 = 𝑋𝑀/𝑛𝑅 and 𝑋𝑀𝑉 = 𝑋𝑀/𝑉𝑅, respectively. Similarly, the rotational sti!ness 𝑋 , can be also

expressed per unit length, with 𝑋𝑛 = 𝑋𝑛𝑅 for the peaks and 𝑋𝑉 = 𝑋𝑉𝑅 for the valleys. For this initial

analysis, the contributions of both sti!ness components to the total elastic energy were introduced

as three di!erent ratios: 𝑋/𝑋𝑀 = 0, 0.5 ⇒ 10⇐4
, 1.0 ⇒ 10⇐4. As a result, two main scenarios were

observed during the compression process of the Kresling cells: Bistability (Bi) and Monostability
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(M), as illustrated in the plots of Fig. S1B. When considering a rotational sti!ness 𝑋 = 0, the results

correspond to those obtained by the bar and truss model defined by two parameters, (b,c).

Configurations with an initial rotational angle within the range 15↘ ↑ 𝑄𝑅 ↑ 60↘ and an aspect

ratio 𝑇𝑅/𝑈 ↔ 1.5 exhibited an apparent bistability. Those Kresling cells showed normalized energy

landscapes with a second local of energy minimum (𝑝𝑚/𝑝𝑐 = 0). In addition, we observed that

the majority of configurations with initial rotational angles lower than 𝑄𝑅 = 40↘ and 𝑇𝑅/𝑈 <1.5

tended to present a monostable behavior. While those with higher values, 𝑄𝑅 > 60↘, allowed small

rotational displacements limiting the folding process and the panels tended to overlap prematurely.

In contrast, Kresling cells with initial relative angles 𝑄𝑅 < 7.5↘, were prone to buckle during the

initial folding stages, displaying an almost rigid behavior and higher energy values. Furthermore,

Fig. S1C presents the corresponding normalized force and elastic energy landscapes obtained for

the configuration: 𝑄𝑅 = 𝑆/6, and 𝑇𝑅/𝑈=1.75. It exhibited a potential tendency towards bistability in

all the evaluated scenarios (𝑋/𝑋𝑀 = 0, 0.5 ⇒ 10⇐4
, 1.0 ⇒ 10⇐4). Thus, we selected these geometrical

parameters for the initial sizing of the Kresling cells used in the subsequent analyses.

S.1.2 Parametric design of 3D Kresling cells

The 3D CAD parametric models were generated in Autodesk Inventor following the initial geo-

metrical configuration: polygons with n = 6 sides, initial relative angle 𝑄𝑅 = 𝑆/6, initial height

versus radius ratio 𝑇𝑅/𝑈=1.75, and panels thickness 𝑀 ≃ 0.04𝑇𝑅. The parametric design process

is summarized in Fig. S2. Firstly, the upper and lower polygons are defined in 2D sketches and

rotating with respect to each other in an angle equal to 𝑄𝑅 = 30↘. The panels thickness 𝑀 was defined

through an o!set to the polygons’ perimeter and the width limit of the creases was determined by

auxiliary circles with radius 𝑈↓. Then, 3D sketches were constructed to enable the 3D structure of

the panels, and by using the command Boundary-surface their profiles can be linked to form the

surfaces of the panels. Next, the surfaces were merged with the Patch command, and volumetric

bodies were obtained to shape the panels and the creases. As a result we obtained a 3D Kresling

cell which represent the intact crease case.

The creases were designed with gradual reductions in their cross-sections, preserving a V

shape at the top and a variable circular shape at the bottom. A cutting radius 𝑀𝑉 = 𝑈
↓ · 𝑂𝑃 is

S6



Bottom polygon 
sketch

0

O

O'
r'

r'

crease width limit

s 

r

3D sketch

0

0

0

Panel 3D sketch

Top-Bottom 
polygons

ho

 θo 

θo 

3D CAD File

V+Circular crease design

o

o'
r'

s

w

 si=s-sc 

A*Crease 
cutting 
radius
 limit

RF=sc/r'

ho

s

s 
sc

Figure S2: Parametric design process of a 3D Kresling cell. Creation of former 2D and 3D sketches in Autodesk

Inventor.

defined according to the imposed reduction factors from 0.25↑ 𝑂𝑃 ↑ 0.80, decreasing the external

thickness 𝑀 and an internal thickness 𝑀𝑁 is obtained. Afterwards, the 3D CAD model were saved as

*.step files for the Abaqus/CAE numerical simulations.

S.1.3 Numerical simulations considerations

The entire modeling process for simulating the kinematics of Kresling cells and generating the

load paths for the parametric study is schematized in Fig. S3. The input 3D CAD files for the

Kresling cells models were saved as *.step files to be imported from Abaqus/CAE Standard for

their assembly. Traditionally, 3D printed Kresling cells have been designed and modeled as linear

elastic shells. This is particularly applicable to polymeric sheets with thicknesses less than 1 mm,

while also considering the use of rigid or flexible materials. However, employing rubbery creases,

which are treated as nearly incompressible material, requires the use of hyperelastic models with

3D hybrid modified formulation elements to achieve more realistic results.

In addition, complex and irregular 3D geometries such as Kresling inspired structures, require

the use of tetrahedron elements besides the application of free mesh with partition strategies.

Thus, intricate shapes can be accurately modeled while maintaining computational e”ciency at the
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same time. Given the hyperelastic nature of the flexible Polyjet photopolymers, the selected mesh

was composed by 10 node quadratic tetrahedron with hybrid modified constant pressure elements

C3D10MH. An adaptive mesh refinement study determined a suitable mesh density that enables

the achievement of convergence within a balanced computational time.

Four types of tetra-mesh from a coarse to refined number of elements were analyzed comparing

their obtained maximum force, that leads to the highest stress concentrations on the Kresling cell,

as well as the CPU time and refinement error (𝑂𝑓 (%)), as described in Fig. S4. The latter was

obtained by using the expression: 100 (𝑃𝑑𝑁 ⇐ 𝑃𝑑4)/𝑃𝑑4, where 𝑃𝑑𝑁 represents the maximum force

obtained in the numerical simulation with each mesh case 𝑁, 𝑃𝑑4 is the maximum force from the

last attempt corresponding to the very refined mesh case M4. The selected mesh corresponded to

the case M3, which is formed by minimum three elements assigned across the panels and creases

cross-sections. This refined mesh fitted more accurately to the Kresling cell geometry, reducing

modeling errors and ensuring convergence.

Moreover, kinematic couplings were assigned between the reference points RP and the top and

bottom ring surfaces to e!ectively transmit the applied displacement, and the assigned boundary

conditions along the entire cylinder. The constitutive models used in the analyses included an

elasto-plastic model for the rigid photopolymers assigned to the panels, and a visco-hyperelastic

model for the flexible materials assigned to the creases.The material characterization data necessary

to define these constitutive models were obtained through uniaxial tests, detailed in the following

sections S.1.5 and S.1.6, and summarized in Tables S1 and S2.

Furthermore, tie constraints were used to create a uniform contact among the panels, creases,

top and bottom ring surfaces. Fixed boundary conditions were applied at the bottom of the cylinder,

specifically at reference point RP1, to restrict displacements and rotations in all directions. A

vertical displacement, 𝑐, approximately equal to one third of the initial height of the Kresling cells

(≃ 1/3 𝑇𝑅), was imposed at the top in the respective reference point RP2 and the corresponding

applied Force was computed to determine the respective force/displacement curves. This target

displacement prevents further overlapping of the panels during the compression of the Kresling

cell.

The rotation at the top was released to simulate the natural twisting plus compression motion

of Kresling cells. A VISCO step was used to perform quasi-static analyses, incorporating time-
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Figure S3: Numerical simulations process in Abaqus/ CAE Standard. Mesh generation, boundary conditions (BC)
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dependent material behavior without inertia e!ects. The geometric nonlinearity option (NLGEOM)

was activated to consider large deformations in the analysis. We first focus on the initial relaxation

region of the analyzed rubbery materials within a time defined as 𝑍→
𝑁
, during which most of the stress

decay occurs, as shown in Fig. 4B, to observe the viscosity e!ects during bistability achievement.

Then, the total simulation duration 𝑏𝑏 was estimated to lie within this initial relaxation region by

using a velocity of 0.1 mm/s to reach the target displacement 𝑐. The VISCO step was defined with

a initial time size set to 0.01𝑏𝑏 , while the maximum and minimum increments were 0.1𝑏𝑏 and 10⇐6,

respectively. Thus, we can accurately capture the viscosity e!ects and ensure the convergence by

reducing the number of increments in the solver. In addition, we performed simulations for each

rubbery material over extended time periods to predict whether bistability can also be achieved

in both short- and long-term relaxation regions. For instance, to determine the total simulation

duration 𝑏𝑏 for the short-term relaxation region, we considered a reference time 𝑍 equal to the

highest 𝑍𝑁 term from the Prony series described in Table S2. In this region, a lower stress decay in

the relaxation curve of each rubbery material was also observed. For long-term e!ects, when the

material is fully relaxed and the stress relaxation curve approaches a horizontal asymptote, we used

total simulation durations 𝑏𝑏 of n𝑍, with n=6.

S.1.4 Design and Fabrication of samples for tensile tests

Polyjet photopolymers main groups can be classified into rigid thermoplastics, rubbers and a hybrid

types of composites, so called Digital Materials. The latter represent a combination between glassy

and flexible polymers, with various levels of shore hardness from A30 to A95. In the present study,

the selected rigid photopolymers were VeroYellow, VeroBlack and Digital ABS. The tested rubbery

Digital Materials were: AgilusClear 30 (Shore A30), FLXA-YT-S60 DM (Agilus30 + Vero Yellow,

Shore A60), FLXA-9970 DM (Agilus30 + VeroClear, Shore A70), FLXA-9985 DM (Agilus30 +

VeroClear, Shore A85) and FLXA-YT-S95 DM (Agilus30 + VeroYellow, Shore A95). In this study

they are referred with the acronyms AG30, DM60, DM70, DM85 and DM95, respectively.

All the samples were fabricated using a 3D printer Stratasys J750 with a layer resolution of

approximately 27 microns in High-Mix mode. The support material was first smoothed in a soapy

water solution bath for one hour and then, it was removed using water jetting.
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Figure S5: Specimens made of photopolymers for uniaxial tests. (A) Fabrication via Polyjet technique with orien-

tations along the X,Y,Z axis of the build tray. (B) Experimental setup for uniaxial tests.

For the uniaxial tensile tests, dog-bone-shaped samples were designed following the ASTM

D638 standard for rigid polymers, and the ASTM D412 standard for rubbers. Five samples were

fabricated for each material type. They were printed in three directions: longitudinal (X), transversal

(Y) and perpendicular (Z) to the build tray, as shown in Fig. S5A. For the stress relaxation tensile

tests conducted on the rubbery material, dog-bone sample design adhered to the ISO 6914, ASTM

E328, and ASTM D412 standards. Three samples were printed longitudinally oriented to the build

tray for each type of Digital Material.

S.1.5 Uniaxial tensile tests and constitutive models

The uniaxial tests were carried with a MIDI 10 testing machine by imposing a cross-head velocity

of 0.1 mm/sec, as shown in Fig. S5B. The tests stopped when fracture occurred in the sample.

During the test both applied displacement and load were recorded. In particular, two types of load

cells with di!erent capacities were used to measure the applied tensile load during the experiments:

100kN for rigid polymers, and 10 kN for rubbery materials. The data rate acquisition was equal to

1 sample/sec. The constitutive models employed in the numerical simulations, were obtained based

on experimental data from the previously mentioned uniaxial tests. The average among the di!erent
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printing orientations, in X,Y and Z, was considered for the mechanical properties estimation. In the

case of rigid photopolymers, such as VeroBlack (VB), an elasto-plastic model was selected. The

average stress-strain curves and Young’s modulus are shown in Fig. S6A and B, respectively. The

Young’s Modulus was estimated from the slope of the 𝑣 ⇐ 𝑤 curves within the elastic range. The

latter is determined by fitting a straight trendline to the experimental curve, which extends from the

beginning of the curve to the point where the 𝑂
2 values approach closest to 1. The elasto-plastic

behavior was modeled in Abaqus/CAE standard, considering the experimental (𝑣 ⇐ 𝑤) curves by

using the material calibration utility.

First, the nominal (𝑣 ⇐ 𝑤) curves inputs get converted into true strains (𝑤𝑏) and true stresses

(𝑣𝑏) with the expressions: 𝑤𝑏 = ln(1 + 𝑤) and 𝑣𝑏 = 𝑣(1 + 𝑤). The Young’s modulus is calculated as

previously explained and used as an input datum. Thus, the yield point can be identified and the

plastic strains, 𝑤𝑒𝑥 , and stresses, 𝑣𝑒𝑥 , are finally estimated to characterize the elasto-plastic model:

(𝑤 = 𝑤
𝑓𝑥 + 𝑤

𝑒𝑥). Moreover, we evaluated the loss of mechanical properties over time of rigid

photopolymers from the Vero group, such as VeroBlack (VB). Similarly, samples were fabricated

and tested one day, one and six months after, following the mentioned uniaxial test procedure.

Rubbery materials are mostly defined by strain energy potential functions due to their hypere-

lastic behavior. Their mechanical characterization requires a further step to find a model that fits

the nominal curves (𝑣 ⇐ 𝑤) with the tensile tests of the Digital materials group: AG30, DM60,

DM70, DM85 and DM95. Considering that the experimental data was obtained from uniaxial tests,

the material constants 𝑠𝑁 𝑦 from linear hyperelastic polynomial models were fitted to the nominal

stresses. Thus, they were calculated through a least-squares method in Abaqus/CAE material model

calibration tool (48). Then, the relative error (RE) of the stress measure is minimized and it is

defined by the expression:

𝑂𝑓 =
𝑔∑
𝑁=1

(
1 ⇐

𝑣
𝑏𝑇

𝑁

𝑣
𝑙𝑞𝑘

𝑁

)2

, (S18)

where 𝑣
𝑙𝑞𝑘

𝑁
represents the experimental stress measures and 𝑣

𝑏𝑇

𝑁
is the nominal stress. In this case,

the latter is determined by the tensile uniaxial stress 𝑧1, which is derived from the strain energy

potential U and the stretch in the loading direction 𝛥1, as follows:

𝑧1 = 2(1 ⇐ 𝛥
⇐3
1 )

(
𝛥1

𝛩𝑚

𝛩𝑡1
+ 𝛩𝑚

𝛩𝑡2

)
(S19)

Thereby, a Neo-Hookean model fitted the nominal stresses of the tested digital materials group
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Figure S6: VeroBlack experimental data. (A) Average Stress-Strain (𝑣 ⇐ 𝑤) plots. (B) Average Young’s modulus E

+/- standard deviation obtained per each group of samples with a printing orientation in X, Y, and Z axis, and overall

average (VB Avg*). Loss of mechanical properties, including: (C) Young’s modulus, E, and (D) Ultimate tensile

strength, 𝑣𝑅, due to aging e!ects analyzed using data obtained from tests conducted after 1 (E=100%), 30, and 180

days of sample fabrication.

from AG30, DM60 to DM95 as Fig. S7A depicts. The fitting was obtained with relative errors

between the range 5% ↑ 𝑂𝑓 ↑ 10%. Moreover, this strain energy function is described in Invariant

base form as: 𝑚𝑟 = 𝑠10(𝑡1 ⇐ 3), and its equivalent stretch base is written as:

𝑚𝑟 =
𝛬10
2

(𝛥2
1 + 𝛥

2
2 + 𝛥

⇐2
1 .𝛥

⇐2
2 ⇐ 3), (S20)

Additional mechanical properties, including average elongation at break (𝑤𝑛), were determined from

the experimental curves (𝑣⇐𝑤), as shown in Fig. S7B. Other hyperelastic models, such as Mooney-

Rivlin and Polynomial N=1, showed higher relative error values ranging from 10%↑ 𝑂𝑓 ↑ 32%,

and they also presented unstable strains during the calibration process.
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S.1.6 Stress Relaxation tests and Viscoelastic parameters

Rubbery materials present high sensitivity to strain rates and time-dependent behavior, which can be

further characterized by a visco-hyperelastic model. The time dependent constitutive equations that

define linear viscoelastic materials, are based on the stress and strain history, loading-displacement

rate and loading application time. Polyjet elastomers usually exhibit a significant relaxation of their

peak stresses in a short time span, some of them reaching it in 20 seconds (39).

The most common viscoelastic models are based on the combination in series or in parallel

of linear elastic (springs) and viscous components (dashpots). Then, the viscoelastic components

can be determined by conducting a stress relaxation test and therefrom, obtaining the subsequent

Prony parameters. The load and time data considered for determining the viscoelastic properties are

recorded once the imposed strain value 𝑤0 is reached. The initial part of loading phase, where the

strain is rapidly increasing, is usually disregarded. After this initial phase, a time t=0 is established

as the starting point for analysis under a constant strain 𝑤0, together with an initial stress 𝑣0 and

the corresponding elastic instantaneous modulus Eo. Therefore, the time dependent stress 𝑣(𝑏) is

defined by:

𝑣(𝑏) = 𝑓 (𝑏)𝑤𝑅 (S21)
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Considering that the material behaves as a Maxwell solid, the time dependent relaxation modulus

Et can be expressed in terms of a Prony series expansion and calculated from 𝑓𝑅 (49), as shown

below:

𝑓 (𝑏) = 𝑓𝑅

(
1 ⇐

𝑟∑
𝑁=1

𝑓𝑁 (1 ⇐ 𝑙
⇐𝑏/𝑍𝐿 )

)
(S22)

where 𝑓i corresponds to the ”i-th” Prony coe”cient, 𝑟 represents the total number of terms of

the Prony series, and 𝑍𝑁 is the relaxation time constant. Thereby, the Tensile relaxation modulus 𝑓 (𝑏),
can be determined by 𝑓 (𝑏) = 𝑣(𝑏)/𝑤0. Then, the Shear relaxation modulus 𝑎 (𝑏), can be obtained

by the expression: 𝑎 (𝑏) = 𝑓 (𝑏)/[2(1 + 𝛯)] and the corresponding values per each analyzed rubbery

photopolymer are illustrated in Fig. S8A. Furthermore, the tensile instantaneous relaxation modulus

𝑓𝑅, corresponding to the time t=0, is defined by 𝑓𝑅 = 𝑣0/𝑤0. Similarly, the shear instantaneous

relaxation modulus 𝑎𝑅, is calculated by 𝑎𝑅 = 𝑓𝑅/[2(1 + 𝛯)]. The Poisson’s ratio 𝛯 of elastomeric

photopolymers and composites with shore hardness between DM60 and DM95, can vary from

0.48 to 0.46, and 0.49 for the rubbery AG30 (38). The rate-independent behavior of the material

can be defined as hyperelastic under large strains in Abaqus/CAE solvers and being described by

the instantaneous relaxation tensile modulus. After, we estimated a normalized shear relaxation

modulus from the experimental curve (𝑎 (𝑏) ⇐ 𝑏) employing the expression: 𝑎𝑔 = 𝑎 (𝑏)/𝑎0. Thus,

Eq. S22 can be re-written in terms of the normalized shear relaxation modulus 𝑎𝑔 (𝑏), and the

dimensionless Prony constants 𝑌𝑁, as follows:

𝑎𝑔 (𝑏) = 1 ⇐
𝑟∑
𝑁=1

𝑌𝑁 (1 ⇐ 𝑙
⇐𝑏/𝑍𝐿 ) (S23)

In addition, the long-term shear relaxation modulus 𝑎↗ is defined by the shear instantaneous

relaxation modulus 𝑎𝑅 and the dimensionless Prony constants 𝑌𝑁, as given by Eq. S22:

𝑎↗ = 𝑎𝑅

(
1 ⇐

𝑟∑
𝑁=1

𝑌𝑁

)
(S24)

Assuming a linear viscosity and nearly incompressibility of the material, given that the Poisson’s

ratio of the studied rubbery materials ranges within 0.46 and 0.49, the long-term tensile relaxation

modulus can be estimated as: 𝑓↗ = 𝑎↗ [2(1 + 𝛯)].
The viscoelastic material properties, defined by the dimensionless Prony series parameters, can

be determined by fitting them to experimental relaxation test data. For this reason, a series of stress
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relaxation tests in tension were performed by adapting the ISO 6914 and ASTM E328 standards.

Three di!erent constant strain values, 𝑤0 = 10%, 𝑤0 = 15%, and 𝑤0 = 25%, were imposed on each

rubbery sample.

The stress relaxation tests for rubbery materials were conducted with a MIDI 10 testing machine

by imposing a cross-head velocity of 0.1 mm/sec and at controlled room temperature (23 ↘C). A

10 kN load cell measured the applied tensile load. When the displacement corresponding to the

target strain was reached, the machine stopped and the load relaxation was monitored. At this point,

an initial time 𝑏 = 0 is established in the force-time curve (𝑃 ⇐ 𝑏), along with its corresponding peak

force 𝑃𝑅 and a constant strain 𝑤𝑅. The tests were considered concluded when the force-time curve

(𝑃 ⇐ 𝑏) approached an almost horizontal asymptotic line.

Subsequently, the stress depending on time 𝑣(𝑏) was calculated by dividing the force 𝑃 (𝑏) by

the cross-sectional area of the sample 𝑊𝑅. This conversion transformed the force-time (𝑃 ⇐ 𝑏) curve

into a stress-time (𝑣⇐ 𝑏) curve, which begins at the peak stress 𝑣𝑅. Next, the average (𝑣⇐ 𝑏) curves

for each group of samples subjected to constant strain values, 𝑤0 = 10%, 𝑤0 = 15%, and 𝑤0 = 25%,

were obtained.

Since the Kresling creases are designed to overcome large deformations, and ISO 6914 standards

recommend the use of high strain values, we selected the maximum strain value (𝑤𝑅=25%) for

estimating the Relaxation modulus and the Prony series parameters. The di!erence between the

𝑎 (𝑏) and𝑎𝑔 (𝑏) curves obtained from the average values and the selected maximum strain (𝑤𝑅=25%)

was not significant. We then applied these obtained Prony coe”cients to the constants within the

strain energy function 𝑚𝑟 (𝑏) in order to introduce the rate-dependent behavior associated with

viscosity. Consequently, in the case of a Neo-Hookean material model defined by an instantaneous

constant 𝑠𝑅

10, the visco-hyperelastic relaxation function can be expressed as follows:

𝑚𝑟 (𝑏) = 𝑠
𝑅

10

(
1 ⇐

𝑟∑
𝑁=1

𝑌𝑁 (1 ⇐ 𝑙
⇐𝑏/𝑍𝐿 )

)
(S25)

These parameters are then incorporated into a visco-hyperelastic constitutive model described by

Eq. S25 for subsequent numerical simulations in Abaqus/CAE.

Then, we fitted the obtained Prony parameters to the experimental data (𝑎𝑔⇐ 𝑏) using a damped

least squared method (DLS). It was implemented using a Matlab optimization toolbox script based

on the Levenberg–Marquardt algorithm. As a result, the selected fitting coe”cients correspond to
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the lowest goodness of fit values, as shown in Fig. S8B. The latter is obtained from the norm of

residuals, denoted as ⇑𝑙⇑ and calculated as follows:

⇑𝑙⇑ =
√√

𝑔∑
𝑁=1

𝑙
2
𝑁
, (S26)

where the residuals 𝑙𝑁 represent the sum of the di!erences between the observed 𝛱𝑁 and predicted

values 𝑗 (𝑞𝑁), being defined as: 𝑙𝑁 = 𝛱𝑁 ⇐ 𝑗 (𝑞𝑁).
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Figure S8: Stress relaxation tests of the Rubbery Digital Materials AG30 to DM95. (A) Relaxation function G(t)

with the corresponding Instantaneous modulus Go. Units: MPa. (B) Experimental and fitted data of the Normalized

shear relaxation modulus Gn(t), in logarithmic scale with their respective goodness of fit in terms of the norm of residuals

⇑𝑙⇑, where: AG30 ⇑𝑙⇑ = 3.9 ⇒ 10⇐4, DM60 ⇑𝑙⇑ = 4.0 ⇒ 10⇐4, DM70 ⇑𝑙⇑ = 5.8 ⇒ 10⇐4, DM85 ⇑𝑙⇑ = 3.1 ⇒ 10⇐3,

DM95 ⇑𝑙⇑ = 2.5 ⇒ 10⇐3.

Table S1: Elastic and Elasto-plastic materials mechanical properties.

Material E (MPa) 𝜴𝜶 (MPa) 𝜷𝜸 (%) 𝜴𝜹 (MPa)

VeroBlack 1543.58 19.79 15.75 44.89

UTL Resin (BMF) 567.00 10.00 40.80 14.10

Origin 402 42.00 - 230 5.5

IP-PDMS 15.30 - 240 -
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Table S2: Flexible materials mechanical properties and Prony series parameters. *𝑓𝑅, 𝑓↗,

𝑎𝑅, 𝑎↗ units in MPa

AG30 DM60 DM70 DM85 DM95

𝑠10 = 0.111 𝑠10 = 0.157 𝑠10 = 0.163 𝑠10 = 0.237 𝑠10 = 0.457

𝑓𝑅 = 0.545 𝑓𝑅 = 0.782 𝑓𝑅 = 1.398 𝑓𝑅 = 3.200 𝑓𝑅 = 6.621

𝑓↗ = 0.459 𝑓↗ = 0.651 𝑓↗ = 0.938 𝑓↗ = 1.676 𝑓↗ = 2.498

𝑎𝑅 = 0.183 𝑎𝑅 = 0.268 𝑎𝑅 = 0.479 𝑎𝑅 = 1.095 𝑎𝑅 = 2.267

𝑎↗ = 0.154 𝑎↗ = 0.220 𝑎↗ = 0.317 𝑎↗ = 0.570 𝑎↗ = 0.855

𝑌𝑁 𝑍𝑁 𝑌𝑁 𝑍𝑁 𝑌𝑁 𝑍𝑁 𝑌𝑁 𝑍𝑁 𝑌𝑁 𝑍𝑁

0.030 7.612 0.035 10.350 0.060 10.717 0.071 10.787 0.143 11.435

0.052 64.359 0.055 98.390 0.099 93.980 0.132 78.847 0.189 93.977

0.045 333.610 0.048 547.863 0.090 498.890 0.131 404.112 0.154 520.646

0.030 2310.2422 0.041 4151.017 0.089 3632.445 0.146 3116.457 0.137 3697.450

S.1.7 Fabrication protocol via Polyjet 3D printing technique

The 3D printed Kresling unit cell fabrication process contemplates three main stages: Design, 3D

printing and Post-processing. During the design stage, the 3D CAD parametric models were gener-

ated in Autodesk Inventor. The selected geometrical configuration for the experimental validation of

the Kresling cells is: C8 case, polygons with n = 6 sides, 𝑄𝑅 = 𝑆/6, 𝑇𝑅/𝑈=1.75, 𝑏 ≃ 0.04𝑇𝑅, creases

width/thickness ratio 𝐿/𝑀 =1.50 and 𝑂𝑃 ↑ 0.66. The Kresling cell dimensions 𝑇𝑅=17.5 mm and

𝑈=10 mm, were scaled three times in order to make feasible their printing and to avoid the di-

mensional limitations regarding manufacturing. The other geometrical parameters and ratios were

maintained to keep the proportions of the analyzed Kresling cells. The parametric design process

was previously summarized in Fig. S22, section S.1.2. The 3D CAD model were saved as Parasolid

files (→.𝑞𝑛) to facilitate the exportation of the assembled components in a unique file for 3D printing.

At the same time, it enables to identify separately the di!erent components of the Kresling cells,

such as panels, peaks, valleys and rings, for the assignation of di!erent materials.

For the printing process, the GrabCAD software was used for the preparation of the printing
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files to be send to a Stratasys J750 printer series, including automatic slicing. Once the files are

imported, the respective dimensions and position along the build tray are controlled. Since the

panels were conceived to be made of rigid materials, the VeroBlack photopolymers was selected.

In the case of the creases, the following flexible materials were employed in di!erent Kresling

cells: AG30, DM60, DM70, DM85 and DM95. The selected support material was SUP706B with

the standard grid density mode. It is important to remark that supports were also assigned to the

panels during the printing process, because of the presence of inclined faces with respect to the

build tray. The printing setting was the following: High-Mix mode with a layer resolution thickness

of 27 microns and matte surface finishing.

The post-processing operations include mostly the supports removal, which demands to be

meticulously carried on specially considering the small dimensions of the Kresling cells creases

being at the edge of Polyjet manufacturing limitation ↑ 1.0 mm. The prolonged contact with

water or alkaline solutions of small elements and multi-material interfaces lower than 1.0 mm

cross-section, lead to a premature breakage and detachment. For this reason, the exposure of the

3D multi-material sample to humidity should be controlled. As an alternative, the support residues

were carefully removed mostly by hand and briefly rinsed in water for less than five minutes.

Support grid

(A)

Support grid

RigidFlexible

Base Support 

(B) (C)
Support top cover

r
hR

hR

ho

Magnets for 
the setup link

Figure S9: Fabrication of multi-material Kresling cells. (A) Polyjet printing process and multi-material deposition

of rigid (VB), flexible (DM60) and support grid (SUP706B). (B) Support material distribution along the samples

with matte surface finishing. (C) 3D printed Kresling cell from case C8 (RF=0.80) used in the experiments, with the

following dimensions: r=30, hR=3, ho=52.50, and thickness of the panels 𝑀=2.25. Units: mm. Scale bar: 10 mm.
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S.1.8 Experimental setup

A further experimental validation was carried on to involve quasi-static tests on the 3D printed

Kresling cells to validate the numerical simulations results. A compression load was applied at

the top of the Kresling cell with a Messphysik 𝛬-strain loading frame machine (from ZwickRoell,

0.01 µm stroke measurement resolution). The experiments were performed at a testing speed of

0.1 mm/sec. The applied Load F and displacement u were measured with a AEP TYPE F1-1kN load

cell and with a displacement transducer mounted internally to the testing machine, respectively. The

tests were stopped once a displacement 𝑐 = 1/3𝑇𝑅 was applied the sample. The experimental setups,

shown in Fig. S10, consists of two fixtures. The top fixture guarantees free rotation, 𝑢, during the

folding of the Kresling (allowing the natural twist under compression inherent to Kresling patterns

kinematics), while the bottom fixture prevent both displacements and rotations (26). The free

rotational fixture is formed by a rotating plate coupled to a ball bearing (SKF 608 SKF 8x22x7)

and a rotational fastener. The Kresling cell samples are directly linked to the top and bottom plates

through two di!erent systems. The first one consisted in a female-male connection system used for

the Kresling cells with thicker creases, as shown in Fig. S10A. Pins were created on the surfaces of

the samples rings and distributed to coincide with the vertices of the hexagonal polygons.

These pins were then inserted into the corresponding holes located in the plates. However, in

this system, when using Kresling cells with thinner creases, the samples tended to slide. To prevent

this problem, we implemented a second connection system based on magnets applied to the top

and bottom of the samples and the plates, as described in Fig. S10B. The components of the first

setup were 3D printed using the PolyJet technique on a Stratasys J750 3D printer, with tolerances of

±0.2 mm for holes and insertions. In contrast, the second setup was printed using the DLP technique

through an Origin-One printer, with tolerances between ±0.1-0.25 mm for the magnet holes and

insertions.

S.1.9 Hands-on experimental validation of Bistability

A manual compressive force was applied to the top of the Kresling cells, allowing free rotation at

the top while constraining all displacements and rotations at the bottom. This action enabled us

to recreate their spontaneous rotation, reflecting the characteristic kinematics during compression.
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Figure S10: Experimental setup for compression test with an applied Load F and displacement u. Exploded

schemes of the experimental setups with a fixture at the top, enabling a free rotation 𝑢, and a fixed support fixture at

the bottom with the following connection systems: (A) Pins and (B) Magnets.

Thus, we conducted a hands-on validation of bistability to determine which Kresling cells remained

in the folded configuration after the manual force was applied. The applied compressive force

generated an axial displacement 𝑐 of approximately one third of the initial height 𝑇𝑅 of the Kresling

cell.

For example, we compared the behavior of Kresling cells with creases made of the rubbery

material DM60 generated with gradual reductions (C8 𝑂𝑃=0.80) versus its corresponding intact

creases cell, as shown in Fig. S11A. We also observed the e!ects of viscosity in Kresling cells (C8

𝑂𝑃=0.80) with creases made of di!erent rubbery photo-polymers AG30, DM60, DM70, DM85

and DM95, as illustrated in Fig. S11B. In these hands-on experiments, we confirmed that all

Kresling cells with creases generated with RF=0.80 remained in the folded configuration for over

60 seconds after the application of the manual compressive force, thus validating the achieved
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Figure S11: Hands-on experimental investigation demonstrating the achievement of bistability (Bi) in 3D-printed

multi-material Kresling cells of Case 8, by comparing their folding process. (A) RF=0.80 versus Intact creases cell

(Int). (B) Di!erent RF=0.80 cells with creases made of rubbery photopolymers: AG30, DM60, DM70, DM85, and

DM95. *Note: The Kresling cells were fabricated with an initial height ho=52.5 mm, and rigid panels made of VB.

The applied force aimed to achieve an axial displacement u≃1/3ho.

bistability in the experiments conducted with the testing machine. Conversely, the Kresling cells

with creases made of the highly viscous DM95 or the intact cell immediately returned to their

original configuration, exhibiting a monostable behavior. The complete hands-on experimental

validation is further described in videos S2 and S4.

S.1.10 Microscopic characterization of 3D printed creases results

The dimensional accuracy of the printing process a!ects the real dimensions of the 3D printed

Kresling cells. The measurements of the peaks and valleys creases from the case C8, with gradual

reductions between 0.25 ↑ 𝑂𝑃 ↑ 0.80, were analyzed. We established a comparison between those

obtained in reality after the Polyjet process and the corresponding exact measurements in the CAD

models. A transversal section passing through the half of the Kresling cell was considered to design

the sample for the characterization of the geometry of both types of creases, peaks and valleys. This

sample replicates the intermediate substrates of the 3D printed Kresling cell.

The real dimensions of 3D printed samples were determined via a stereo microscope (Nikon
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SMZ800) equipped with an ED Plan 1.5x lens and with a DS-Ri2 camera. The mean values and the

corresponding standard deviations (SD) were obtained from three real measurements (n=3) of the

geometrical parameters characterizing the creases, as illustrated in Fig. S12 and Fig. S13 for both

creases, peaks and valleys. We determined the corresponding mean percentage error, 𝑑𝑒𝑓 (%)
between the dimensions from printed samples (Real) and those used from the CAD models, as

follows:

𝑑𝑒𝑓 (%) = 100
𝑔

𝑔∑
𝑔=1

(
𝑑𝑠𝑊𝛴 ⇐ 𝑑𝑂𝑙𝑜𝛶

𝑑𝑂𝑙𝑜𝛶

)
(S27)

The obtained real and exact measurements of the analyzed creases, with the respective 𝑑𝑒𝑓 (%)
error are described in Fig. S14, in Fig. S15, Fig. S16 and Fig. S17, including peaks and valleys.

The measurements taken along the multi-material interface between the rigid and the rubbery

photopolymer show di!erences with an error between 2 ↑ 𝑑𝑒𝑓 (%) ↑ 8. The transition zone

where the two materials are merging is not homogeneous. For this reason, the dimensions along

the edges of the 3D printed creases were not easily measured, potentially leading to an error. Since

the internal thickness 𝑀𝑁 is a crucial parameter for generating gradual reductions along the creases,

we have selected this control parameter to evaluate the impact of di!erences between the exact and

real measurements on the resulting experimental load paths and compare them to the numerical

results. Subsequently, an updated CAD model of Kresling cells may be created by adjusting the

internal thickness 𝑀𝑁 according to the mean real measurements of the analyzed 3D printed creases.

Furthermore, we also observed that when the exact dimensions were designed less than 1.20 mm,

the obtained real dimensions in the 3D printing process led to greater values exhibiting a nega-

tive error -1 ↑ 𝑑𝑒𝑓 (%) ↑ -25. Specifically, in the cases related to creases with smaller internal

thickness 𝑀𝑁 generated with the reduction factors ranging within 0.57 ↑ 𝑂𝑃 ↑ 0.80. In contrast, a

positive error is achieved within 3 ↑ 𝑑𝑒𝑓 (%) ↑ 10, when the exact dimensions from the CAD

files are above 1.20 mm, such as the cases with reduction factors between 0.25 ↑ 𝑂𝑃 ↑ 0.50. It

means that the resulting creases exhibited smaller real dimensions. This fact can be attributed to the

printing limitation of fabricating defective load bearing elements with cross-sections around 1 mm,

besides the characteristic dimensional accuracy of Polyjet J750 printers. In the case of printing

with High-Mix mode, where the layer height reaches 13-16 microns, the exhibited dimensional

accuracy ranges within ±0.06-0.1% for part lengths under ≃100 mm (42), even grasping values

around ±0.10 mm in real applications.
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Figure S12: Microscope characterization of 3D printed creases. (A) Intermediate transversal section of the 3D

printed Kresling cells from case C8 with gradual reduction factors ranging between 0.57 ↑ 𝑂𝑃 ↑ 0.80 (scale 3:1).

Comparison between the real (3DP) and the exact (CAD) measurements of the corresponding: (B) Peaks and (C)

Valleys. Units: microns. Scale bar:1 mm.
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Figure S13: Microscope characterization of 3D printed creases. (A) Intermediate transversal section of the 3D

printed Kresling cells from case C8 with gradual reduction factors ranging between 0.25 ↑ 𝑂𝑃 ↑ 0.50 (scale 3:1).

Comparison between the real (3DP) and the exact (CAD) measurements of the corresponding: (B) Peaks and (C)

Valleys. Units: microns. Scale bar:1 mm.
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Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

REAL 1 1805.42 1977.77 786.63 2336.39 2323.52 1842.47 1701.28 3843.36 421.35 487.45
2 2049.90 2123.95 743.41 2567.10 2559.89 1840.53 1753.66 3947.92 335.62 347.94
3 1797.31 1897.40 734.76 2350.34 2249.66 1856.68 1751.66 3913.40 549.37 538.36

Mean 1884.21 1999.71 754.93 2417.94 2377.69 1846.56 1735.53 3901.56 435.45 457.92
SD 143.55 114.86 27.79 129.36 162.05 8.82 29.68 53.28 107.57 98.59

CAD 1 2173.78 2173.14 710.08 2512.84 2508.53 1815.27 1732.96 3773.05 368.96 373.54
MPE (%) 13.32 7.98 -6.32 3.78 5.22 -1.72 -0.15 -3.41 -18.02 -22.59

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

REAL 1 2095.18 1666.30 639.68 1868.19 1894.55 1851.63 1900.95 3814.28 792.53 656.45
2 2079.31 1987.27 639.68 1893.64 1732.67 1909.83 1733.86 3800.96 727.67 638.99
3 2393.20 2258.65 553.23 1876.31 1821.23 1861.73 1793.39 3626.94 986.39 889.77

Mean 2189.23 1970.74 610.86 1879.38 1816.15 1874.40 1809.40 3747.39 835.53 728.40
SD 176.82 296.52 49.91 13.00 81.06 31.10 84.69 104.53 134.61 140.02

CAD 1 2453.70 2455.58 577.80 1857.34 1869.41 1815.27 1732.61 3653.10 844.40 824.90
MPE (%) 10.78 19.74 -5.72 -1.19 2.85 -3.26 -4.43 -2.58 1.05 11.70

REAL 1 2044.80 1999.25 829.85 2481.65 2331.27 1913.83 1727.26 3460.71 448.72 518.83
2 1956.78 1980.91 829.85 2453.26 2460.88 1864.04 1748.99 3423.04 610.22 702.65
3 1843.65 1930.68 899.85 2406.09 2390.02 1827.35 1756.54 3427.05 609.43 707.45

Mean 1948.41 1970.28 853.18 2447.00 2394.06 1868.41 1744.26 3436.93 556.12 642.98
SD 100.84 35.50 40.41 38.17 64.90 43.41 15.20 20.69 93.01 107.54

CAD 1 2173.78 2173.14 843.42 2512.84 2508.53 1815.27 1732.96 3494.55 502.29 506.87
MPE (%) 10.37 9.33 -1.16 2.62 4.56 -2.93 -0.65 1.65 -10.72 -26.85

REAL 1 2064.31 2149.35 899.01 1870.29 1712.57 1885.14 1682.04 3703.44 877.00 801.23
2 2457.63 2458.85 622.39 1894.36 1911.09 1839.71 1799.86 3562.02 872.50 885.46
3 2277.95 2257.50 855.78 1962.17 1809.93 1856.07 1739.69 3725.26 899.96 807.23

Mean 2266.63 2288.57 792.39 1908.94 1811.20 1860.31 1740.53 3663.57 883.15 831.31
SD 196.90 157.07 148.81 47.64 99.27 23.01 58.91 88.62 14.73 46.99

CAD 1 2453.70 2455.58 674.91 1857.34 1869.41 1815.27 1732.61 3652.71 958.31 940.19
MPE (%) 7.62 6.80 -17.41 -2.78 3.11 -2.48 -0.46 -0.30 7.84 11.58

Geometrical Parameters RF=0.80
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.74
Peaks measurements

Valleys measurements

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S14: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with

0.74 ↑ 𝑂𝑃 ↑ 0.80. Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage

error 𝑑𝑇𝑄 (%) with respect to the exact (CAD) measurements. Units: microns.
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REAL 1 1925.05 1952.67 1089.18 2355.76 2441.13 1882.14 1701.58 3306.21 592.87 661.01
2 1762.63 1897.89 1097.82 2367.57 2346.68 1840.89 1818.57 3144.04 656.89 707.30
3 2076.20 2037.56 976.80 2358.92 2403.50 1846.38 1773.73 2918.37 746.48 754.29

Mean 1921.29 1962.71 1054.60 2360.75 2397.10 1856.47 1764.63 3122.87 665.41 707.53
SD 156.82 70.37 67.52 6.11 47.55 22.40 59.02 194.78 77.16 46.64

CAD 1 2173.78 2173.14 843.42 2512.84 2508.53 1815.27 1732.96 3494.55 502.29 506.87
MPE (%) 11.61 9.68 -25.04 6.05 4.44 -2.27 -1.83 10.64 -32.48 -39.59

REAL 1 2276.31 2216.95 812.56 1870.04 1810.70 1858.39 1766.07 3234.99 987.65 735.99
2 2200.04 2255.46 924.94 1816.62 1842.53 1738.40 1790.08 3205.89 914.09 880.13
3 2299.29 2135.98 726.12 1771.06 1696.32 1777.74 1736.65 3083.61 1163.36 1060.41

Mean 2258.55 2202.80 821.21 1819.24 1783.18 1791.51 1764.27 3174.83 1021.70 892.18
SD 51.95 60.98 99.69 49.54 76.89 61.17 26.76 80.33 128.08 162.55

CAD 1 2453.70 2455.58 791.14 1857.33 1869.41 1815.27 1732.61 3044.68 1100.72 1084.35
MPE (%) 7.95 10.29 -3.80 2.05 4.61 1.31 -1.83 -4.27 7.18 17.72

REAL 1 1843.58 1878.57 1262.07 2383.19 2311.19 1788.05 1730.54 2845.25 843.64 920.16
2 1951.89 2039.94 1244.78 2474.39 2412.00 1804.26 1770.34 2813.76 815.30 898.31
3 2072.20 2191.38 1236.13 2409.32 2481.15 1818.14 1762.74 2531.63 910.13 947.11

Mean 1955.89 2036.63 1247.66 2422.30 2401.45 1803.48 1754.54 2730.21 856.36 921.86
SD 114.36 156.43 13.21 46.97 85.47 15.06 21.13 172.70 48.68 24.44

CAD 1 2173.78 2173.14 1224.37 2512.84 2508.53 1815.27 1732.96 2697.78 883.24 887.84
MPE (%) 10.02 6.28 -1.90 3.60 4.27 0.65 -1.25 -1.20 3.04 -3.83

REAL 1 2430.01 2413.36 847.14 1888.91 1806.66 1823.66 1801.08 2723.95 1423.84 1265.66
2 2266.27 2237.62 847.14 1888.21 1807.67 1846.33 1794.40 2855.89 1149.21 1090.58
3 2438.34 2431.34 838.50 1886.06 1764.47 1839.21 1766.05 2811.48 1354.00 1246.38

Mean 2378.21 2360.77 844.26 1887.73 1792.93 1836.40 1787.18 2797.11 1309.02 1200.87
SD 97.03 107.03 4.99 1.49 24.66 11.59 18.60 67.13 142.73 96.00

CAD 1 2453.70 2455.58 946.48 1857.34 1869.41 1815.27 1732.61 2609.96 1283.88 1269.77
MPE (%) 3.08 3.86 10.80 -1.64 4.09 -1.16 -3.15 -7.17 -1.96 5.43

Geometrical Parameters RF=0.57
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.66
Peaks measurements

Valleys measurements

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S15: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with

0.57 ↑ 𝑂𝑃 ↑ 0.66. Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage

error 𝑑𝑇𝑄 (%) with respect to the exact (CAD) measurements. Units: microns.
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1

2

3
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2

3 Peaks Valleys

REAL 1 1938.23 1904.66 1296.64 2318.11 2340.35 1784.59 1781.64 2361.64 987.28 1017.38
2 1975.79 2093.31 1297.49 2412.80 2448.53 1837.37 1773.89 2472.90 978.77 1082.89
3 2038.33 2035.59 1327.49 2436.15 2402.00 1904.94 1810.34 2531.46 942.40 1078.77

Mean 1984.12 2011.19 1307.21 2389.02 2396.96 1842.30 1788.62 2455.33 969.48 1059.68
SD 50.57 96.66 17.57 62.51 54.27 60.33 19.20 86.26 23.84 36.69

CAD 1 2173.78 2173.14 1434.00 2512.84 2508.53 1815.27 1732.95 2361.35 1043.96 1048.55
MPE (%) 8.72 7.45 8.84 4.93 4.45 -1.49 -3.21 -3.98 7.13 -1.06

REAL 1 2322.80 2075.29 985.45 1767.51 1769.52 1807.56 1783.69 2401.85 1563.69 1661.65
2 2324.10 2312.17 1100.89 1826.11 1806.05 1837.07 1812.26 2260.21 1538.72 1469.46
3 2152.60 2078.57 950.87 1866.78 1746.68 1827.55 1724.35 2407.22 1193.45 1197.10

Mean 2266.50 2155.34 1012.40 1820.13 1774.08 1824.06 1773.43 2356.43 1431.95 1442.74
SD 98.64 135.83 78.56 49.90 29.95 15.06 44.84 83.37 206.93 233.43

CAD 1 2453.70 2455.58 1058.19 1857.34 1869.41 1815.27 1732.61 2283.87 1421.29 1408.90
MPE (%) 7.63 12.23 4.33 2.00 5.10 -0.48 -2.36 -3.18 -0.75 -2.40

REAL 1 1825.07 1936.91 1547.33 2324.26 2263.44 1799.77 1714.02 2053.97 1205.87 1207.09
2 2018.29 2079.35 1538.68 2382.63 2377.57 1818.97 1730.74 2040.43 1236.40 1260.02
3 1992.82 1978.89 1555.97 2281.62 2336.26 1842.91 1790.18 1869.76 1337.59 1353.99

Mean 1945.39 1998.38 1547.33 2329.50 2325.76 1820.55 1744.98 1988.05 1259.95 1273.70
SD 104.98 73.19 8.65 50.71 57.79 21.61 40.03 102.67 68.95 74.40

CAD 1 2173.78 2173.14 1610.08 2512.84 2508.53 1815.27 1732.96 1889.97 1268.96 1273.56
MPE (%) 10.51 8.04 3.90 7.30 7.29 -0.29 -0.69 -5.19 0.71 -0.01

REAL 1 2408.36 2429.37 1296.64 1822.79 1793.45 1820.92 1740.57 2044.27 1532.16 1569.42
2 2276.83 2280.70 1262.07 1798.03 1792.89 1799.84 1740.85 1797.87 1433.65 1416.88
3 2267.32 2228.39 1322.58 1807.67 1799.34 1788.70 1746.69 1589.70 1479.77 1414.80

Mean 2317.50 2312.82 1293.76 1809.50 1795.23 1803.15 1742.70 1810.61 1481.86 1467.03
SD 78.83 104.27 30.36 12.48 3.57 16.36 3.46 227.55 49.29 88.68

CAD 1 2453.70 2455.58 1214.91 1857.34 1869.41 1815.27 1732.61 1827.24 1613.72 1603.74
MPE (%) 5.55 5.81 -6.49 2.58 3.97 0.67 -0.58 0.91 8.17 8.52

Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.40
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.50

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S16: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with

0.40 ↑ 𝑂𝑃 ↑0.50. Mean values, and standard deviation (SD) of the real measurements, besides the mean percent-

age error 𝑑𝑇𝑄 (%) with respect to the exact (CAD) measurements. Units: microns.
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REAL 1 2007.90 2155.04 1590.55 2333.07 2430.29 1859.66 1726.92 1846.22 1322.36 1490.03
2 2028.15 2180.96 1694.28 2323.11 2403.11 1828.61 1707.10 1693.91 1380.78 1442.26
3 2092.83 2118.11 1633.77 2312.08 2334.74 1848.64 1697.99 1580.72 1468.83 1542.94

Mean 2042.96 2151.37 1639.53 2322.75 2389.38 1845.64 1710.67 1706.95 1390.66 1491.74
SD 44.36 31.59 52.10 10.50 49.23 15.74 14.79 133.23 73.73 50.36

CAD 1 2173.78 2173.14 1760.09 2512.84 2508.53 1815.27 1732.96 1575.47 1418.96 1423.56
MPE (%) 6.02 1.00 6.85 7.56 4.75 -1.67 1.29 -8.35 1.99 -4.79

REAL 1 2342.48 2213.98 1495.46 1748.28 1824.03 1720.14 1731.25 1467.53 1701.94 1518.26
2 2245.91 2181.91 1538.68 1837.17 1711.47 1798.85 1711.47 1433.87 1951.36 1710.22
3 2350.44 2343.54 1495.46 1730.69 1711.92 1750.96 1664.61 1075.60 1941.09 1873.85

Mean 2312.94 2246.48 1509.87 1772.05 1749.14 1756.65 1702.44 1325.67 1864.80 1700.78
SD 58.19 85.58 24.95 57.08 64.86 39.66 34.22 217.22 141.13 177.98

CAD 1 2453.70 2455.58 1318.87 1857.34 1869.41 1815.27 1732.61 1522.77 1742.04 1733.69
MPE (%) 5.74 8.52 -14.48 4.59 6.43 3.23 1.74 12.94 -7.05 1.90

REAL 1 2090.82 2177.36 1970.90 2370.55 2333.97 1846.06 1729.49 805.27 1798.33 1948.19
2 2136.14 2273.04 1823.94 2385.47 2560.47 1860.38 1773.35 1032.96 1676.56 1690.60
3 2012.82 2091.49 1875.81 2412.80 2424.35 1807.23 1716.87 1280.27 1580.28 1665.81

Mean 2079.93 2180.63 1890.22 2389.61 2439.60 1837.89 1739.90 1039.50 1685.06 1768.20
SD 62.38 90.82 74.53 21.43 114.02 37.50 29.64 237.57 109.27 156.37

CAD 1 2173.78 2173.14 1947.58 2512.84 2508.53 1815.27 1732.96 1182.07 1606.46 1611.07
MPE (%) 4.32 -0.34 2.95 4.90 2.75 -1.25 -0.40 12.06 -4.89 -9.75

REAL 1 2381.80 2225.93 1504.11 1817.79 1776.20 1804.06 1740.32 1346.03 1662.17 1605.54
2 2244.79 2173.83 1513.93 1691.98 1675.51 1732.54 1718.32 1351.15 1855.47 1924.44
3 2293.10 2291.09 1555.97 1758.96 1720.56 1808.49 1714.21 1307.83 1803.89 1740.83

Mean 2306.56 2230.28 1524.67 1756.24 1724.09 1781.70 1724.28 1335.00 1773.84 1756.94
SD 69.49 58.75   27.55 62.95 50.44 42.63 14.04 23.67 100.09 160.06

CAD 1 2453.70 2455.58 1449.74 1857.33 1869.41 1815.27 1732.61 1142.11 1902.48 1896.18
MPE (%) 6.00 9.17 -5.17 5.44 7.77 1.85 0.48 -16.89 6.76 7.34

Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.33
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.25

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S17: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with

0.25 ↑ 𝑂𝑃 ↑0.33 Mean values, and standard deviation (SD) of the real measurements, besides the mean percent-

age error 𝑑𝑇𝑄 (%) with respect to the exact (CAD) measurements. Units: microns.
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S.2 Supplementary Text

S.2.1 Intact Kresling cell 3D analysis

Based on the initial geometrical configuration that leads to bistability, we parametrically designed

the 3D Kresling cells, as further detailed in S.1.2. The analyzed group of intact cases was conformed

by Kresling cells with a variable width of the creases. This term is expressed in terms of the width

versus thickness ratio, denoted as 𝐿/𝑀. Thus, the number of intact cases analyzed ranged within

(0.50↑ 𝐿/𝑀 ↑ 2.00) with their respective notation: Int 1 to Int 11, as shown in Fig. S18A.
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Figure S18: Kresling cells with intact creases analysis (A) Geometrical details of Intact creases cases, from Int 1 to Int

11, defined in terms of the ratio w/s. Load paths within the ranges: (B) 0.50 ↑ 𝐿/𝑀 ↑ 2.00 and (C) 1.50 ↑ 𝐿/𝑀 ↑ 2.00.

The load paths obtained from the numerical simulations, depicted in Fig. S18B, reveal that

despite the utilization of flexible creases, the intact cases did not achieved the theoretical bistability

as predicted by the preliminary five-parameters model assessment. Specifically, the force values did
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not reached values below zero, preventing a second local minimum energy state. We have observed

that the intact cases with narrower creases (Int 1 to 4) ranging between (0.50↑ 𝐿/𝑀 ↑ 0.90), tended

towards monostability and become highly sti! instead. In contrast, the intact cases (Int 5 to 11) with

wider width creases (1.07↑ 𝐿/𝑀 ↑ 2.00), exhibited a monostable behavior. Although using flexible

creases facilitates the folding process, the Kresling cell quickly reverts to its initial configuration

once the axial load is applied, and second stable state is still not achieved, as evidenced by the load

paths in Fig. S2C. This behavior can be attributed to the restoring force related to the viscoelastic

nature of photopolymers. Therefore, these initial results indicate that utilizing elastomeric creases

requires further design strategies to potentially achieve a bistable configuration in practice.

S.2.2 Creases design: Complementary results

The parametric study of the Kresling cells with the creases design, results from the numerical

simulations in Abaqus/CAE Standard, shown in Fig. S19. We assessed how the gradual reductions

creases a!ected the energy landscape and the transition form a bistable (Bi) to a monostable (M)

behavior. As narrower the internal thickness 𝑀𝑁, the Kresling cell tends to achieve bistability.

This is especially observed in wider creases with a ratio 𝐿/𝑀 ↔ 1.20, with an internal thickness

𝑀𝑁 and reduction factors between 0.66 ↑ 𝑂𝑃 ↑ 0.80, taking values between 0.58 ↔ 𝑀𝑁/𝑀 ↔ 0.05. It

is evidenced in the load paths with their corresponding stored energy landscapes, U, from Fig. S20

to Fig. S23. Moreover, the sequential experiments conducted on the Kresling cells within the range

potentially exhibiting bistability (0.66 ↑ 𝑂𝑃 ↑ 0.80) are presented in Fig. S24. The results reveal

a loss of load capacity of approximately 50% due to the degradation of the thin rubbery creases

(RF=0.80). In contrast, thicker creases (RF=0.66) appeared more resistant, losing around 30%

of load capacity. The analyzed Kresling cell cases were designed according to the geometrical

parameters detailed in Fig. S25 for a 1:1 scale.
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Figure S19: Parametric study of the creases geometry. Geometrical parameters with their attained Rotational

Sti!ness (𝑋̃), that lead to monostability (M) or bistability (Bi). ’Limit Bi’: boundary between (Bi) and (M) determined

experimentally. *The crease edge limit determines the range of reduction radius factors, RF, to maintain a Circular

shape at the lower part of the crease. Results from Kresling cells at 1:1 scale.
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Figure S20: Load paths and stored energy (U) landscapes variation according to the crease internal thickness (si)

decrement based on the reduction factors RF. (A) C1 (𝐿/𝑀 = 0.50), (B) C2 (𝐿/𝑀 = 0.60) and (C) C3 (𝐿/𝑀 = 0.75).
The corresponding curves were generated until the panels started to be in contact during the numerical simulations.
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Figure S21: Load paths and stored energy (U) landscapes variation according to the reduction factors RF. (A)

C4 (𝐿/𝑀 = 0.90), (B) C5 (𝐿/𝑀 = 1.07), and (C) C6 (𝐿/𝑀 = 1.20). The corresponding curves are presented in the

following order RF: 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80.
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Figure S22: Load paths and stored energy (U) landscapes variation according to the reduction factors RF. (A)

C7 (𝐿/𝑀 = 1.35), (B) C8 (𝐿/𝑀 = 1.50) and (C) C9 (𝐿/𝑀 = 1.65). The corresponding curves are presented in the

following order RF: 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80.
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Figure S23: Load paths and stored energy (U) landscapes variation according to the reduction factors. (A) C10

(𝐿/𝑀 = 1.80), and (B) C11 (𝐿/𝑀 = 2.00). The corresponding curves are presented in the following order RF: 0.80,

0.74, 0.66, 0.57, 0.50, 0.40, 0.33, and 0.25.
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Figure S24: E!ect of the degradation of the rubbery crease cross- sections on the load path after performing

sequential experiments on the same samples. (A) RF=0.80, (B) RF=0.74 and (C) RF=0.66. Kresling cells case C8

fabricated with creases made of DM60, at 3:1 scale.
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S.2.3 Estimation of Rotational Sti!ness in Creases

Whether a rubbery material is considered for the design of the creases, large deformations are

expected to be developed. The V-shape+Circular cross-section of the creases can be simplified into

an equivalent rectangular strip that delimits the zone predominantly under bending. Its dimensions

are the width w and the internal thickness 𝑀𝑁, where the latter varies according to a reduction factor

𝑂𝑃. Thereby, we assessed the e!ects of the decrement of cross-sections on the rotational sti!ness,

𝑋̃ , of the designed creases. The angular rotation 𝛷, corresponding to a given bending moment

𝑑 applied on the equivalent section, can be estimated considering the formulations of bending

of an incompressible elastic Neo-Hookean block proposed by (44). This method assumes that the

deformed configuration of the block follows the shape of a planar sector of a cylindrical tube with

a thickness 𝑀 𝑗 , an initial angle 𝛷𝑁 and a radius 𝑈 , as shown in Fig. S26A. The last two terms define

the cylindrical coordinates of the system, thus: 𝑈𝛹 [𝑈 𝑗 , 𝑈 𝑗 + 𝑀 𝑗 ] and 𝛷𝛹 𝑗 [⇐𝛷𝑁,𝛷𝑁], being the out

of plane terms neglected. The term 𝑈 can be calculated by fulfilling the impressibility constraint,

where the deformed section is equal to the initial area defined by 𝑀i and 𝐿. Then, the following

relation can be established:

𝑈 𝑗 =
𝐿 𝑀𝑁

2 𝛷𝑁 𝑀 𝑗

⇐
𝑀 𝑗

2
(S28)

Considering a Neo-Hookean response of the section, one of the principal stress components 𝑧𝛷 in

cylindrical form is defined as:

𝑧𝛷 (𝑈) = 𝑎𝑅

(
⇐ 𝐿

2

8𝛷2
𝑁
𝑈

2 +
6𝛷2

𝑁

𝐿
2 𝑈

2 ⇐ 1

)
⇐ 𝑎𝑅

2

(
⇐ 𝐿

2

4𝛷2
𝑁
(𝑈 𝑗 + 𝑀 𝑗 )2

+
4𝛷2

𝑁
(𝑈 𝑗 + 𝑀 𝑗 )2

𝐿
2 ⇐ 2

)
. (S29)

where, 𝑎𝑅 is the initial shear modulus and the thickness 𝑀 𝑗 of the deformed configuration can be

obtained by the following expression:

𝑀 𝑗 =
𝐿

𝛷𝑁

⇓
2

√√√
⇐1 +

√
1 + 4𝛷2

𝑁

𝑀
2
𝑁

𝐿

(S30)

The bending moment 𝑑 , corresponding to the stress on the deformed configuration, is calculated

by the following integration in the interval [𝑈 𝑗 , 𝑈 𝑗 + 𝑀 𝑗 ]:

𝑑 =


𝑈 𝑈 +𝑀 𝑈

𝑈 𝑈

𝑈𝑧𝛷 (𝑈) 𝛺 𝑈 (S31)

S37



Using Eq.S31, we calculated the bending moment 𝑑 of the equivalent cross- sections, 𝑑 ,

obtained at a given rotational angle ranging within 0 ↑ 𝛷 ↑ 𝑆/2. The analytical results of the

creases from cases C8 (𝐿/𝑀 = 1.50) and C11 (𝐿/𝑀 = 2.00) were selected for validation against

numerical simulations in Abaqus/CAE-Standard, as indicated in Fig. S26B and C, respectively.

The thicknesses of the equivalent rectangular blocks correspond to the variable internal thickness

si generated by reduction factors ranging from 0.25 ↑ 𝑂𝑃 ↑ 0.80. Moreover, the corresponding

mesh was created using biquadratic hybrid elements (CPE8RH). The equivalent rectangular blocks

were subjected to bending until reaching a rotational angle of 𝛷 = 𝑆/2 allowing us to obtain

the corresponding bending moment 𝑑 . This demonstrated the close alignment between the FEA

calculations and the analytical formulation. Furthermore, the plots from Fig. S27 depict the bending

moment values obtained in Eq.S31 at a given rotational angle 0 ↑ 𝛷 ↑ 𝑆/2, applied to the equivalent

cross-sections corresponding to crease cases C1 to C11, along with their respective reduction factors

RF, as well as the related intact crease cases.
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Figure S26: Rotational sti!ness calculation. (A) Bending of an incompressible rectangular block equivalent to the

crease cross-section. Comparison of analytical and FEA results for the bending moment, M, and angular rotation, 𝛷,

in cases: (B) C8 (𝐿/𝑀 = 1.50) and (C) C11 (𝐿/𝑀 = 2.00). *Note: Results are presented in the order reduction factors

ranging from 0.25 ↑ 𝑂𝑃 ↑ 0.80, representing a variable si

Then, the rotational sti!ness was obtained using the expression: 𝑋̃= 𝑑/𝛷. We observed that

rotational sti!ness depends on the variation of internal thicknesses si, their associated reduction

factors 𝑂𝑃, and the width of the creases 𝐿. For instance, bistable creases with thinner internal

thicknesses, generated by reduction factors 0.66 ↑ 𝑂𝑃 ↑ 0.80 and ranges of 0.40 ↔ 𝑀𝑁/𝑀 ↔ 0.30
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(C8) and 0.21 ↔ 𝑀𝑁/𝑀 ↔ 0.05 (C11), achieved the highest angular rotation value 𝛷 = 𝑆/2 ≃1.57 rad

at lower bending moments. Consequently, they exhibited higher flexibility and lower rotational

sti!ness than their thicker creases counterparts, which fall within the ranges 𝑀𝑁/𝑀 ↔ 0.57 (C8) and

𝑀𝑁/𝑀 ↔ 0.37 (C11), as previously shown in Fig. S19.
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S.2.4 E!ects of creases viscosity on bistability: Complementary Results

The assessment of bistability in Kresling cells with creases made from di!erent rubbery materials

is presented in Fig. S28, which is constructed from the load paths and energy landscapes illustrated

in Figs. S29-S32, based on analyses of Kreling cells at 1:1 scale (x1). We determined whether

creases with varying viscosity and relaxation moduli can still achieve bistability, as explored in

the parametric study in section 2.1. The numerical simulations were conducted for a time duration

corresponding to the limits of the initial (𝑍→
𝑁
), short- (𝑍), and long-term (𝑔𝑍) relaxation regions to

predict whether viscosity e!ects influence the achievement of bistability at di!erent time scales.

Moreover, we conducted experiments on Kresling cells (C8 RF=0.80, fabricated at a 3:1 scale) with

creases made of AG30, DM60, DM70, DM85, and DM95, as shown in Fig. S33. An average load

capacity loss of approximately 50% was observed due to degradation of the crease cross-sections,

with lower peak load decrements in softer photopolymers (AG30, DM60, and DM70) which have

lower viscosity and relaxation moduli.
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DM70, DM85 and DM95. Results for C11 RF=0.66 cells at a 1:1 scale (×1). Filled regions include FEA simulations
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Figure S33: E!ect of the degradation of the rubbery crease cross-sections on the load path. Experimental results

after performing three sequential tests on Kresling cells C8 RF=0.80 with creases made of: (A) AG30, (B) DM60,

(C) DM70, (D) DM85 and (E) DM95. Kresling cells fabricated at a 3:1 scale. Filled regions include FEA simulations

within the range 𝑍
→
𝐿 ↑ 𝑍 ↑ 𝑔𝑍. (F) Experimental relaxation curve. Times 𝑍

→
𝐿 , 𝑍 and n𝑍, respectively considered for the

numerical analysis of viscosity e!ects. Experiments were performed at a test speed which correspond to a relaxation

time 𝑍
→
𝐿 =180 s.
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S.2.5 Monomaterial Kresling cells: Complementary Results

The load paths and stored energy landscapes of the rubbery photopolymers DM60, DM70 and

DM85 are shown in Fig. S34. They exhibited monostability and complement the analyses presented

for monomaterial Kresling cells, as described in Section 2.5.
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Figure S34: Load paths and energy landscapes of Monomaterial Kresling cells. Cases with variable void inclusions

along the creases: (A) M-1 and (B) M-2. Results of Kresling cells at a 1:1 scale.
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Caption for Video S1. Experimental validation of the parametric study on crease geometry

of 3D printed Kresling cells. Comparison between Numerical (FEA) and Experimental (Exp) load

path results from compressive tests on the C8 case. Kresling cell creases, generated with reduction

factors RF = 0.80, 0.66, and 0.50, exhibited bistable or monostable behavior.

Caption for Video S2. Hands-on Experimental validation of Bistability in 3D printed Kres-

ling cells. Evidence of bistable or monostable behavior in various Kresling cells with creases made

of DM60. The creases were generated with reduction factors in the range of 0.25↑RF↑0.80 and an

intact crease case (INT).

Caption for Video S3. Experimental validation of the crease degradation in 3D printed

Kresling cells. E!ect of rubbery crease cross-section degradation on the load path, observed after

three sequential experiments on the same sample (C8, RF=0.80, creases made of DM60).

Caption for Video S4. E!ects of viscosity on bistable Kresling cells: Hands-on experimental

validation. Evidence of bistable or monostable behavior in Kresling cells (C8, RF = 0.80) with

creases made of rubbery materials that have di!erent viscosity and relaxation modulus compared

to DM60 (G60=0.220 MPa):AG30 (G↗=0.7G60), DM70 (G↗=1.4G60), DM85 (G↗=2.6G60), and

DM95 (G↗=3.9G60).

Caption for Video S5. Programmable Monostable Kresling Assemblies. Compression test,

folding process, and load paths from numerical (FEA) and experimental (EXP) analysis for the

following cases: (i) all creases made of DM60, (ii) sti!er creases (DM95) in the even layers, and

(iii) sti!er creases (DM95) in the odd layers. Numerical simulations stopped at the first contact

between panels.

Caption for Video S6. Prototyping of 3D printed Kresling cells via Polyjet technique. Dif-

ferent stages of fabrication and post-processing for multi-material 3D-printed Kresling cells using

a Stratasys J750 printer within the PolyJet framework.
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