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Origami extends beyond intricate paper creations, envisioning revolutionary
engineering applications. While 3D printing has simplified fabricating complex
structures, Kresling origami remains predominantly paper based due to the chal-
lenge of achieving multistable behavior, especially at a small scale. Our study
focuses on investigating modifications to the energy landscape induced by changes
in crease geometrical parameters, addressing the effects of viscoelasticity in the
creases. The latter aspect is investigated using different rubbery materials with
varying relaxation moduli. Considering the limitations of manufacturing tech-
niques, we also provide design insights for crease geometry and distribution,
along with photopolymers suitable for fabricating both multi- and monomaterial
bistable cells, at both micro- and macro- scales. By leveraging 3D printing and
overcoming its material and technological constraints, our goal is to contribute
to a deeper understanding of the mechanics of 3D printed materials and broaden

their applications into new frontiers.
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1 Introduction

Once origami has surpassed the barrier of being merely decorative folded paper objects, it has
become a source of inspiration for creating groundbreaking devices across various engineering
fields (7). Kresling origami is currently one of the most studied origami patterns for the devel-
opment of versatile structures, particularly in the programmable soft robotics area (2—9), highly
deployable and energy absorption devices (/0—14), and wave control metastructures (/5-18). Kres-
ling origami is considered a natural twisted buckling shape that results from the compression of
two interacting tubes. This pattern can also be identified in nature, for example, in the bellows
shapes found in the abdomen of hawk-moths (19, 20). The intrinsic bistability exhibited by a single
Kresling cell, permits the achievement of controlled compliant mechanisms and in the case of cou-
pled Kresling cell modules, multistability (2/-27). The material characteristics of the creases play
a key role in Kresling origami mechanics, regulating the contraction/expansion process, tailoring
the overall stiffness, and leading to mono or bistable behaviour (28). Thus, the creases become
essential components for controlling the energy landscape of the Kresling cell. Manual, subtractive
and additive manufacturing processes have been used for the fabrication of Kresling structures
with materials different than the traditional paper or cardboard. This is mostly done at the macro
and meso-scale. Since multi-material 3D printing techniques, such as Material Jetting (MJ), Fused
Deposition Modeling (FDM), or Fused Filament Fabrication (FFF), enable a more direct method-
ology to manufacture complex origami shapes and the use of rigid and flexible materials during a
single printing round, their popularity has been increasing among academics and industry. There
are current examples that exploit these techniques for the fabrication of Kresling structures, with
panels made up of stiffer materials and softer creases that act as hinges. It allows for a smoother
transition between an expanded and a compressed state, or vice-versa, by using different photopoly-
mers (29-31) or filaments (32-36). In addition, the use of flexible creases improves the fatigue
resistance and life cycle of the Kresling cells (37). Resin-based techniques, such as MJ, offer the
possibility to build objects with high precision (layers 16-27 microns), a lower level of anisotropy

(<5%), smoother surface finishing, fewer support removal operations, stronger interface bond be-



tween rigid and flexible parts, and a broader range of soft photopolymers for fabricating flexible
creases, compared to other multi-material printing processes.These types of soft photopolymers
are characterized by a long-range crystalline order, which enhances their mechanical strength and
enables tunable deformation responses (38). However, this type of 3D printing photo-resins exhibits
an inherent viscoelastic (39) behavior that can lead to a temporary bistability in Kresling cells and
a gradual loss of stiffness over time. Consequently, the expected achievement of this mechanical
characteristic in theory tends to be compromised in practice, and the Kresling cells return to their
initial configuration prematurely. Moreover, the technological limitations of most multi-material
3D printers could restrict the possibility of miniaturizing devices, especially in demanding sectors
such as biomedical for the fabrication of drug delivery soft robotics. For instance, the minimum wall
thickness is constrained by the nozzle size of extrusion printers in FDM and FFF techniques, typi-
cally ranging from 0.25 mm to 1.00 mm depending on the current printer series (40, 41). Regarding
MJ, producing strong load-bearing elements with less than 1.0 mm thickness is restricted due to
the likelihood of presenting defects (42). Furthermore, the majority of the micro-scale” printers
currently available in the market still utilize a single photo-resin. Therefore, this limitation prevents
direct fabrication of Kresling cells with the required difference in stiffness between rigid panels
and soft creases, and this feature is essential for facilitating the characteristic contraction/expansion

mechanism, as seen in multi-material techniques.

1.1 Motivation and outline

The outcomes of our study provide design insights for programming the energy landscape of 3D
printed Kresling cells, counteracting the material and technological limitations in 3D printing. Our
goal is to enable the manufacturing of more precise, reliable, scalable and multistable Kresling
structures. We explored two main manufacturing approaches: Multi-material and Mono-material.
In the multi-material scenario, rigid and rubbery photopolymers are assigned to the panels and
creases, respectively. Although the bending of the panels plays a significant role in the folding of
non-rigid Kresling cells, as seen in paper-based models, we chose to print the panels using rigid
materials to better understand the role of the geometry of the creases on the energy landscape of

the Kresling cell. Therefore, the primary folding relies mostly on the flexible, rubbery-like creases.



We initially defined the fundamental geometrical parameters of a cylindrical Kresling cell to
achieve theoretical bistability and developed parametric 3D models based on this configuration, as
illustrated in Fig. [TA. However, the viscoelastic nature of rubbery photopolymers interferes with
practical bistability, causing the cell to prematurely return to its original configuration during the
compression/expansion process. Then, we implemented a design strategy that involved gradually
reducing the cross-section of the crease geometries. This created peak and valley creases with
V+circular shapes, variable widths (w), and internal thicknesses (s;). A parametric study was
conducted to assess the influence of these reductions on cross-section and rotational stiffness,
using Reduction Factors (RF) ranging from 0.25 < RF < 0.80, as shown in Fig[IB. These gradual
reductions facilitated transitions between bistable (Bi), and monostable (M) behavior, as detailed
in the results section

The bistable behavior is related to a Kresling cell whose energy landscape exhibits a second
local minimum of energy, and negative force in the load path. We categorized the behavior as
monostable when the Kresling cell’s load path does not intersect its displacement axis at zero
load (43).

Time-dependent stress-strain responses and energy loss are key characteristics of viscoelastic
materials, which exhibit residual strain that recovers over time, allowing the material to return
to its original state. This results in temporary bistability. Once stress relaxation occurs, stability
is lost, and the structure gradually returns to its initial configuration. In our second analysis, we
evaluated these effects in bistable multi-material Kresling cells with rubbery photopolymer creases
of varying relaxation moduli. In the numerical simulations, we considered elasto-plastic and visco-
hyperelastic models with 3D hybrid formulation elements to accurately capture the mechanical
behavior of 3D-printed rigid and rubbery photopolymers, respectively. This approach offers a more
realistic alternative to traditional 2D origami models, particularly for materials such as paper or
thin polymeric sheets.

We experimentally validated the load paths and energy landscapes obtained numerically by
testing 3D-printed Kresling cells fabricated using the Polyjet technique. In addition, we performed
microscopic characterization of the rubbery creases to assess potential dimensional discrepancies
between the CAD model and actual printed dimensions, as illustrated in Fig. [IIC. Lastly, we

explored alternative designs for a mono-material bistable cell, as depicted in Fig. [ID, aimed



at microfabrication. The stiffness differences between creases and panels are achieved through
geometric reductions, including voids along the peaks and valleys. Furthermore, we also investigated
the effects of various 3D printing photo-resins on Kresling multistability and the programmability

of monostable Kresling assemblies through crease stiffness distribution.

2 Results

2.1 Parametric study of creases geometry for Bistability

First, we selected the following initial sizing configuration for the parametric design of 3D Kresling
cells, shown in Fig. [I]A: polygons with n=6 sides, initial relative angle 6, = /6, and an aspect

ratio h,/r=1.75, as detailed in sections|S.1.1/and [S.1.2|of Supplementary Materials and Methods.

Initially, we analyzed Kresling cells with intact crease cross-sections. The results showed that
their bistability was compromised by a sudden return to the initial configuration, attributed to the
viscosity of the rubbery creases (as further explained in the Supplementary Text[S.2.T).

As a design strategy to achieve bistability and program energy landscapes, we conducted a
parametric study to assess how gradually reducing crease cross-sections influences the energy
landscape. The geometrical changes illustrated in Fig. were proposed based on the following
procedure: The upper V-shape remained constant, preserving the crease width w, while the bottom
part was gradually reduced by considering a variable cutting radius s.. It encompasses a circum-
ference with its center at the extreme vertex o. Using imposed reduction factors, denoted as RF/,
we can control the decrease of the parameter s, relative to the limiting crease radius r’, and thereby
determine the extent of crease cross-section reduction. Accordingly, we can define the reduction
factor as: RF = s./r’.

We then introduced a new geometrical parameter corresponding to the internal thickness s;.
This term represents the difference between the external thickness s and the variable cutting-radius
s¢, which depends on the selected reduction factor RF'. As the RF values increase, the generated
creases exhibit smaller internal thickness s; and these gradual reductions can be quantified as the
ratios of the reduced to intact cross-sections, A /A, and their corresponding rotational stiffness,

K /K. Here, the reduced cross-sections and corresponding rotational stiffness are denoted by A and
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Figure 1: 3D models of the Kresling cell. (A) Multi-material (MM) with crease design cases. (B) Crease cross-section
gradual reductions derived from the former intact creases cross-sections, A, with a variable width-thickness ratio w/s,
an internal thickness s; obtained from cutting radius s, and reduction factors RF. Here, A and A represent the reduced
and intact cross-sections, respectively. Similarly, K denotes the rotational stiffness of the reduced cross-sections, while
K corresponds to that of the intact cross- sections. (C) Comparison between 3D printed creases dimensions taken
from microscope images and CAD files of case C8 with gradual reductions. Units: microns. Scale bar:1 mm. (D)
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K, respectively, while the intact cross-section and its rotational stiffness are denoted as A and K.

As aresult, the proposed variable creases geometry consists of a combined V+circular typology,
yielding a series of Kresling cell cases to be analyzed in terms of the parameters: w, RF, s;, and
s. Thereby, we introduced eleven main cases, C1 to C11, derived from the variation of the width
with respect to the external thickness, expressed as the ratio w/s=0.50, 0.60, 0.75, 0.90, 1.07,
1.20, 1.35, 1.50, 1.65, 1.80, 2.00. The gradual reductions applied to each of the main cases
are represented by the variations in internal thickness s;, which directly depend on the reduction
factors, denoted as RF=0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80. This process subdivided
each crease case into eight sub-cases, each corresponding to one of the specified RF values. The
load paths and stored energy landscapes of the generated geometrical combinations were obtained
through numerical simulations, as detailed in Supplementary Text using a multi-material
approach. A rigid photopolymer (VB), modeled as an elasto-plastic material, was assigned to the
panels. A rubbery photopolymer (DM60), modeled as a visco-hyperelastic material, was assigned
to the creases. For this, we incorporated viscoelastic parameters into its characteristic hyperelastic
behavior, such as the Prony series coefficients (g;, 7;) and relaxation moduli (G (7)), as explained in
sections and of Supplementary Materials and Methods. Then, the effect of the gradual
reduction of the creases on the energy landscape was evaluated based on the variation of the width
w and internal thickness s; with respect to the external thickness s, denoted as the ratios w/s and
si/ s, respectively.

Thereafter, in Fig. , we show which geometrical combinations exhibited a bistable, or monos-
table behavior, along with their rotational stiffness K, estimated using the bending formulations
of an incompressible elastic Neo-Hookean block (44) (as detailed in Supplementary Text [S.2.3).
For instance, the Kresling cells that satisfied the bistability criteria were made of wider creases
(1.07 < w/s < 2.00) and designed with greater cross-section reductions (0.58 > s;/s > 0.05). The
latter were generated by reduction factors relying on the range 0.66 < RF < 0.80. Such reduction
factors enabled the creation of creases with the thinnest internal thicknesses s;j, resulting in the
highest decrement of cross-section and rotational stiffness up to A/A=0.50 and K/K=0.10 com-
pared to the corresponding intact creases, as shown in Fig. [IB. Therefore, this confirms that as the
crease becomes less stiff, it gains enough flexibility to ensure the achievement of bistability. On

the other hand, creases designed with reduction factors below RF=0.66 reached greater internal
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Figure 2: Influence of the creases geometrical parameters on the energy landscape. (A) Parametric study of
creases to evaluate the achievement of bistability (Bi), or monostability (M), in terms of the variation of width (w)
and internal thickness (s;) with respect to the external thickness (s), reduction factors (RF) and Rotational Stiffness
(K). The crease-cutting radius limit determines the range of reduction factors necessary to maintain a circular shape
at the lower part of the crease. ’Limit Bi’: boundary between bistability and monostability determined experimentally.
Results are based on Kresling cells at 1:1 scale (x1). (B) Load paths and (C) stored energy (U) landscapes of case
C8 (w/s=1.50) at 3:1 scale (x3). The corresponding curves are presented in the following order RF: 0.25, 0.33, 0.40,
0.50, 0.57, 0.66, 0.74, and 0.80. (D) Iterative process to adjust CAD dimensions, verify discrepancies with the real

dimensions of 3D-printed Kresling cells, and determine the corresponding adjusted load paths (FEA,q).



thickness (s;) values. They tend to increase the restoring force values of the respective Kresling
cells, gradually moving them away from zero. Therefore, they are unable to achieve bistability
and are prone to show a monostable behavior instead. Thus, we determined a possible limit for
achieving bistability from the combinations with RF > 0.66, as shown in Fig.[2JA.

In an extreme scenario, when the width versus external thickness ratio is below w/s < 1.07,
the creases tend to be narrower and very rigid, falling into a mono-stable category, and when
they presented higher s; values, the stored energy values also increased. In general, we observed
that Kresling cells exhibited monostable behaviors when they are formed by stiffer creases. These
crease configurations reached reduction ratios of approximately A/A > 0.70 for cross-sections and
K/K > 0.30 for rotational stiffness. Moreover, we analyzed the load paths and the corresponding
stored energy obtained numerically for the intermediate case C8 (w/s=1.50), as shown in Fig. [2B,
and Fig. 2IC. We compared two types of numerical simulations, the first considering the exact
cross-section dimensions from the CAD file and the second with the adjusted dimensions obtained
from the microscope characterization, indicated as FEA and FEA 4, respectively. We also observed
that a second local minimum of energy was reached when the creases presented gradual reductions
between the range 0.40 > s;/s > 0.35 corresponding to the already mentioned reduction factors

0.66 < RF < 0.80.

2.2 Scalability and experimental validation

Furthermore, we observed through numerical simulations that the load paths of the analyzed Kres-
ling cells can be scaled. For instance, Fig[3]A shows that the position of the second local minimum of
energy of the C8 RF=0.80 Kresling cell, ata 1:1 scale (x1), varies from a displacement u=4.53 mm,
t0 9.06 mm at a 2:1 scale (x2) and 13.59 mm at a 3:1 scale (x3). This fact demonstrates that scaled
Kresling cells maintained the expected bistable behavior at the same geometrical proportions with
respect to 1:1 scale (x1). Thus, Kresling cells can be scaled to meet manufacturing requirements
across different length scales, from microfabrication to large-scale additive manufacturing. In the
present study, Kresling cells for the C8 case were fabricated using the PolyJet technique at a 3:1
scale (x3) for the corresponding experiments, as detailed in section[5.4] This scale ensures feasible

printing, as the internal thickness dimensions s;, fall within the PolyJet manufacturing limits of



0.6-1.0 mm.

The experimental setup for the compression tests is illustrated in Fig.[3B. The experiments were
performed by imposing a displacement u at one side of the sample and leaving free the rotation in
the opposite side, as detailed in section[5.5] During the test we monitored the applied displacement u
against the measured restoring force F'. Moreover, the achievement of bistability is highly sensitive
to geometric variations in crease parameters, such as width w and internal thickness s;. The existent
differences between the exact (CAD) and the real dimensions of the 3D printed Kresling cells are
attributed to the inherent loss of dimensional accuracy of the 3D printer in use.

Thorough a microscopic characterization (further explained in sections and of
Supplementary Materials and Methods), we estimated a mean percentage error, Mpg (%), between
the exact and the real dimensions of the analyzed creases and panels from a sample corresponding
to the case C8. In this example, the internal thickness s; dimensions exhibited an mean percentage
error in the range: -25 < Mpg (%) < 10, where negative values imply higher real measures than
the CAD models. This error range represents a small difference between the exact dimensions and
the real dimensions of the creases, and corresponds to the expected dimensional accuracy of a
J750 Polyjet 3D printer, which is commonly about 10%. Therefore, we primarily relied on the load
paths obtained from the numerical simulations (FEA) using the exact dimensions from the CAD
file geometry for their respective experimental validation, as shown in Fig.[3C, D and E.

Subsequently, we experimentally confirmed that C8 case samples with reduction factors in the
range 0.25 < RF < 0.57 exhibited monostability, as illustrated in Fig. 3|C. These cases corresponded
to creases with internal thickness s; greater than the manufacturing limit of 1.0 mm. The effect of
crack formation during the experiments on these thicker creases was minimized. For this reason,
the numerical load paths (FEA) closely matched those obtained experimentally (EXP). In Fig. 3D,
the experiments from C8 cases with 0.74 < RF < 0.80 validated the bistable behavior observed in
the corresponding Kresling cells at a 1:1 scale, as described in Fig. [2A.

However, some discrepancies were observed in the load path region where a change in the
sign of the load was expected. This may be attributed to the fact that these narrow creases, with
thicknesses below the manufacturing limit of 0.6 mm, are prone to develop longitudinal cracks that
dramatically reduce their stiffness. In addition, the load path corresponding to the configuration

with a reduction factor of RF =0.66 may represent the actual limit between bistability and
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Figure 3: Scalability and experiments on multi-material 3D printed Kresling cells. (A) Observed scalability in
Load paths and in the position of the second local minimum of energy on Kresling cells, at a 1:1 (x1), 2:1 (x2) and
3:1 (x3) scales. (B) Experimental Setup for multi-material 3D printed Kresling cells at 3:1 scale, designed to impose a
vertical displacement u corresponding to a restoring force F, with free rotation at one end. (C-E) Comparison between
Numerical and Experimental tests performed on case C8 with: (C) RF =0.25,0.33, 0.40, 0.50 and 0.57. (D) RF =0.66,
0.74, and 0.80. (E) Effect of the degradation of the rubbery crease cross-sections on the load path after performing

three sequential experiments on the same sample (C8, RF=0.80 creases made of DM60).

monostability, denoted as 'Limit Bi’ in Fig. [2JA. Its experimental load path tends to remain above
zero, making it difficult to confirm whether the condition for achieving a second local minimum
of energy is truly satisfied, as shown by the corresponding numerical load path. A summary of the
experiments, including hands-on experimental validation of bistability, is presented in videos S1
and S2. Furthermore, we observed that sequential compression tests can induce degradation in the
rubbery photopolymer, resulting in longitudinal cracks along the creases, particularly in areas with

cross-sectional dimensions smaller than 0.6 mm. To investigate this, we performed the compression
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experiment three times on the same samples.

Gradual decreases in the load values achieved for sample RF = 0.80 were detected across
experimental curves denoted 1, 2, and 3, as shown in Fig. , along with additional details in video
S3 and supporting Fig. We determined that approximately 30% and 50% of the load capacity

achieved in test 1 was lost after tests 2 and 3, respectively.

2.3 Effects of creases viscosity on bistability

In a second parametric study, we focused on the effects of viscosity on the bistability and stored
energy in Kresling cells composed of rubbery creases while preserving the same rigid panels.
Specifically, we analyzed the configurations of creases from cases C8 to C11, which led to bistabil-
ity during the first parametric study described in section Those creases were modeled exclu-
sively with the rubbery material DM60, which has a relaxation modulus of G¢o=0.220 MPa. The
selected groups of creases are located within the following geometrical ranges: 0.05 < s;/s < 0.41
and 1.50 < w/s < 2.00, as shown in Fig. |4JA. We obtained the corresponding numerical load paths
and energy landscapes using various rubbery photopolymers characterized by different relaxation
moduli and viscosity with respect to DM60, including AG30 (Ge=0.7Ggp), DM70 (Goo=1.4Gg),
DMB8S5 (Gs=2.6Ggp), and DM95 (G=3.9Ggp), as detailed in Supplementary Text[S.2.4] Their vis-
coelastic properties, such as relaxation modulus (G(t)) and Prony parameters (g;, 7;), were de-
termined experimentally (see Section of Supplementary Materials and Methods for more
details). As a result, Fig. 4A summarizes whether bistability is preserved in the geometrical config-
urations analyzed under various levels of relaxation modulus and viscosity. In addition, bistability
was numerically evaluated over different time scales, considering the initial (7;"), short- (), and
long-term (n7) relaxation times exhibited by the visco-hyperelastic materials analyzed, as indicated
in Fig. @B.

Thus, we observed that Kresling cells composed of creases with a lower relaxation modulus,
characterized by the softest photopolymers AG30, DM60, and DM70, remained in bistable behavior
in the majority of cases and in all the analyzed time scales. Configurations whose reduction factors
are in the range within 0.74 < RF < 0.80 can also achieve bistability with rubbery materials having

an intermediate relaxation modulus, such as that of DM85. However, in cases where geometrical
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configurations are at the limit of achieving bistability, which are generated with a reduction factor
RF=0.66 and when using DM85, a monostable scenario occurred. On the other hand, we inferred
that at the highest relaxation modulus and viscosity, for instance DM95 material, the Kresling
cell tends to exhibit monostability in most cases. Consequently, we estimate that as the rubbery
material in the creases becomes more highly viscous, with a high relaxation modulus, the load
values consistently stay above zero, and the sample tends to return to its initial state, compromising

a bistable behavior.

2.4 Experiments on Kresling Cells with variable visco-hyperelastic creases

We selected the configurations of the case C8 RF=0.80 to experimentally validate their bistable
behavior previously described in Fig. dA. For this, we compared their numerical and experimental
load paths and stored energy landscapes, as illustrated in Fig fIC. The fabrication of the samples
and the experiments were done as detailed in sections [5.4] and respectively. We confirmed
experimentally that bistability is maintained by Kresling cells made of creases with the less stiff
rubbery materials and characterized by lower relaxation moduli, such as AG30, DM60, DM70,
and the intermediate, DMS85. Similarly, Kresling cells with creases made of DM95, which has
the highest relaxation modulus among the analyzed rubbery materials, lost the ability to achieve
bistability in practice. Instead, the Kresling cell transitioned to a monostable scenario, where the
load values tend to deviate further from intersecting the displacement axis at zero force. Then,
a corresponding rise in stored energy is observed without reaching a second local minimum of
energy. This occurs despite the fact that the geometrical design favors bistability when using softer
materials with lower relaxation moduli. We can attribute this to the fact that the rubbery material
DMO95 is more likely to exhibit higher viscosity than the other photopolymers and retain stiffness
over time, making even the folding of the Kresling cell more difficult. Consequently, we observed
that variations in relaxation modulus can aid in tuning the energy landscapes, as well as modifying
the geometrical parameters of the creases.

The experiments were conducted similarly to those described in section and included
hands-on experimental validation of bistability, as shown in video S4. We also detected crack

initiation along the creases made of other rubbery materials different from DM60, including
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AG30, DM70, DM85 and DM95, in the tested Kresling cells. This affected the accuracy of the
experimental load paths with respect to the corresponding numerical counterparts, as we observed
in the experiments shown in Fig. 3D. Likewise, degradation in the creases was noted after testing
each sample consecutively three times, representing a technological limitation related to the use of

rubbery photopolymers with very small cross-sections (<0.6 mm), as further detailed in supporting

Fig.

2.5 Mono-material cells

In the context of the multi-material 3D printing approach, the compression/expansion process of
Kresling cells, as well as the achievement of bistability, becomes feasible by combining the bending
of rigid panels and rubbery creases. In the case of using a single material, we propose a strategy
in which we segmented the creases and create voids along the full volume of the valleys (V, ),
and peaks (V) r), as shown in Fig. and B. This difference in volume contributed to reduce the
stiffness of the creases with respect to the panels. Then, the analyzed Kresling cells, denoted as M-1
and M-2, are designed with the geometrical configuration of case C11 RF=0.80. We selected this
configuration because it potentially exhibits bistability, independently of the viscoelastic properties
of the creases materials, as described in Section The variable volume of the valley creases
is denoted as V. In the M-1 case, where the number of voids along the valleys is zero, and their
volume is V,, =V, r. In M-2 case, the number of voids along the valleys is 2, and their volume is
equal to V,=3/5V,.

In both Kresling cell cases M-1 and M-2, the reduction of the peaks volume was also considered
as a minimum fraction of their respective full volume, denoted as V,=2/7 V), ;. The remaining small
amount of material that forms the peaks, only contributes to the connection between the panels. Thus,
we simplify the analysis by regarding the volume of the valleys V,, with their voids inclusions, as the
sole variable of analysis. The load paths and energy landscapes corresponding to M-1 and M-2 cases
are shown in Fig. and B. They indicate that both Kresling cells, made completely of rubbery
photopolymers such as Origin 402, IP-PDMS, and DM95, exhibited a monostable behavior. In
addition to these materials, the use of photopolymers with a stiffness of around 600 MPa, like UTL,

suggests that monomaterial Kresling cells can also achieve bistability. This type of photopolymers
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are used in micro-printing being characterized by high-flexibility and toughness, suitable for snap-
fits or similar fixtures. Additional results with rubbery photopolymers, including DM60, DM70,
and DM85, are presented in Supplementary Text

2.6 Programmable Monostable Kresling Assemblies

The variation of geometrical parameters in Kresling cells, such as initial relative angle 6, and the
aspect ratio between the initial height and the polygon’s radius 4, /r, can lead to programmable
energy absorption levels. We analyzed the following mono-stable Kresling cell configuration:
number of polygon’s sides n=8, 6, = 45°, and h,/r=0.40, determined using the same criteria as
the previously analyzed configuration with n=6. Next, 3D parametric Kresling cells were designed
and coupled in chiral configurations to form multi-story cylinders with five stories (#stories=5). In
this analysis, we aimed to explore the crucial role of crease stiffness in the compression/expansion
process and storing energy in multi-story and monostable Kresling cells.

These structures were numerically analyzed in Abaqus/CAE standard to determine their load
paths and energy landscapes during compression, as detailed in section |5, and were validated
experimentally, as described in section and video S5. A vertical displacement was applied at
the top, while the bottom is fixed, as shown in Fig. [5|C. The Kresling multi-story cylinders were
designed for fabrication using multi-material 3D printing, with rigid panels (VB), and creases
made of softer (DM60) and stiffer (DM95) rubbery materials. Thereafter, we generated three
different cases to specifically evaluate the influence of creases with variable stiffness: (i) creases
made entirely of the softer rubbery material DM60 across all five stories, (ii) stiffer creases in
the even stories (DM60-DM95-DM60-DM95-DM60), and (iii) stiffer creases in the odd stories
(DM95-DM60-DM95-DM60-DMY5).

During the folding of the multi-story cylinders, the numerical load paths were tracked until
the contact between panels started, reaching a displacement in the range of 12 mm <u<16 mm.
We calculated the stored energy at these points. Using the value from case (i) as a reference, we
observed increases of 59.15% and 139.05% with the inclusion of stiffer creases, as seen in cases (ii)
and (iii), respectively. Moreover, considering the intermediate stories 2, 3, 4 as points of analysis,

we observed that all the stories are folded uniformly in the case (i), where creases are made of
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along peaks/valleys
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Figure 5: Load paths and stored energy landscapes of monomaterial Kresling cells and programmable Kresling
assemblies. (A) M-1, and (B) M-2 cases. Materials with intermediate stiffness tend to achieve bistability (Bi). Results
of Kresling cells at 1:1 scale. (C) Compression test and folding process of cases (i) All the creases DM60, (ii) Stiffer
creases (DM95) in the even stories, and (iii) Stiffer creases (DM95) in the odd stories. The number of folded stories at a

displacement ux 12mm is indicated. (D) Numerical (FEA) and experimental (EXP) results. The numerical simulations

stopped at the first contact among panels.
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the same material DM60. On the alternating creases stiffness cases, stories with creases made of
softer material tended to be folded first than their rigid counterparts. For instance, the odd story 3
(DM60) in case (ii), was folded first than the even stories 2 and 4 made of stiffer material (DM95)
and vice-versa in case (iii), as described in Fig. [5D. Hence, we proposed another approach for the
programmability of stored energy and to control the localized deformation of specific stories during
the folding process of multi-story Kresling structures. Therefore, we aimed to provide design hints
for 3D printed structures that could potentially be employed in programmable motion and damping

devices.

3 Discussion and Limitations

Starting with a Kresling cell configuration (n=6, h,/r=1.75, 6, = n/6), along with the proposed
gradual reduction of the creases cross sections, we conducted numerical simulations to obtain the
corresponding load paths and energy landscapes. Traditional modeling approaches for Kresling
structures typically involve thin-shell elements primarily intended for physical prototypes made
from paper-based or thin polymer sheets. However, using 3D hybrid-modified elements enabled us
to incorporate visco-hyperelastic models, providing a more realistic mechanical response for viscous
and nearly incompressible materials, such as the flexible photopolymers used in 3D printing. Under
the assumptions of paper-based models, such as constant crease cross-sections and zero viscosity,
predictions of mechanical behavior differ when applied to 3D-printed Kresling cells. For example,
the design of an intact rubbery crease is more likely to not exhibit the theoretically predicted
bistability. For multi-material 3D printing Kresling cells, we established a range of geometrical
parameters, including width-to-external thickness ratio w/s, internal thickness s;, and reduction
factor RF, leading to parametric design process to obtain bistable cells. Based on the results of the
parametric study, we have confirmed that the geometry of the creases is influential when aiming a
specific load path.

Particularly, when the crease width w exceeds a ratio w/s > 1, the energy landscapes of
the multi-material 3D-printed Kresling cells can be significantly controlled by modifying the
internal thickness s; using imposed reduction factors RF', while maintaining the same width w. For

example, we demonstrated that the internal thickness s; is a critical factor in achieving bistability.
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Specifically, values in the range 0.30 < s;/s < 0.05 generated by reduction factors RF between
0.74 and 0.80, ensure bistability while reducing the cross-section relative to the intact cross-section
by an approximate ratio of 0.60 > A/A > 0.50. Consequently, the rotational stiffness of the
reduced creases relative to the intact crease decreases to a range of 0.20 > K/K > 0.10, ensuring
the flexibility required for bistable Kresling cells. In contrast, Kresling cells generated with RF
values below 0.66 tended toward monostable behavior in practice. In these cases, we observed that
the experimental load path remains above zero, which differs from the numerical counterpart’s
prediction. Furthermore, we noted that, after applying a compressive load to the Kresling cell, it
returned to its initial configuration more quickly, as shown in video S2. Thus, we confirmed that
bistability was not achieved in practice.

For this reason, we established a reduction factor RF'=0.66 as a geometric limit for determining
bistability. This discrepancy may be due to slight increases in cross-sectional dimensions resulting
from printing accuracy, potentially leading to a greater thickness, s;, and closer to that of the next
case with RF = 0.57. Although taking measurements along the crease length is complicated due
to the complex geometry of the Kresling cell, the fact of having such a greater crease thickness is
confirmed by the microscopic measurements we performed along an horizontal slicing plane that
cuts the Kresling cell at the mid-height.

We numerically and experimentally determined how the achieved bistability is affected by the
visco-hyperelastic behavior characteristic of rubbery 3D printing materials. For example, in the par-
ticular case of C8 Kresling cells with creases made of rubbers with lower (AG30, DM60, DM70) and
intermediate (DM85) relaxation moduli preserved bistability. Considering DM60 relaxation mod-
ulus as Go=1.0Ggp, we have AG30 (G=0.7Ggp), DM70 (Goo=1.4G¢p) and DM8S (Go=2.6Ggp).
In contrast, when the creases were characterized by a higher relaxation modulus such as the case
of DM95 material (3.9 Ggg), the Kresling cells transitioned towards a monostable behavior. Our
numerical simulations also predicted that bistability is preserved over different time scales corre-
sponding to the initial (7]), short- (7), and long-term (nt) relaxation times. Since numerical
simulations showed that the energy landscapes did not vary significantly for relaxation times higher
than 7;, we decided to perform them a test speed which correspond to a relaxation time 7;'=180 s.
This choice allows for efficient characterization while avoiding unnecessary long-term testing, as

the observed bistability remains over time. When comparing visco-hyperelastic creases made of
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different rubbery materials, the viscoelastic component, specifically the difference in relaxation
modulus, appeared to have a greater effect on achieving bistability than the time scale of anal-
ysis. Furthermore, these results suggest that specific geometrical parameters leading to creases
with smaller cross-section thickness s;, such as those generated with a reduction factor RF=0.80,
play a more significant role in the achievement bistability and programming the energy landscape,
counteracting the inherent viscoelastic effects.

In the case of a monomaterial approach, the geometrical designs with the narrowest creases
(especially those generated with a reduction factor RF'=0.80) were selected, as they provide the
highest rotational stiffness reduction K/K = 0.10 and flexibility. Our design strategy was based
on variations in stiffness along the creases, achieved through the inclusion of voids in the peaks and
valleys, which facilitated the compression and expansion processes of the Kresling cell. Regardless
of the material used, we also evidenced that decreasing the volumes of the creases by including more
voids along the valleys, can modify the energy landscapes resulting in lower stored energy values.
These differences can be observed by comparing the energy landscapes corresponding to the cases
M-1 in Fig. and M-2 in Fig.[5B. For example, considering both cases made of UTL resin, M-1
and M-2, their achieved total stored energy values were U=32 mJ and U=26 mJ, respectively. This
means that the inclusion of two voids along the valleys, corresponding to the fraction V,,=3/5 Vv f,
can result in a decrease of 18.75% in the total stored energy.

Since rubbery photopolymers exhibit low tensile instantaneous relaxation moduli between
1.0MPa < E, < 10MPa, the effect of their visco-hyperlastic properties on preserving bistability
is almost not mitigated without the interaction with stiffer panels. On the other hand, very rigid
photopolymers led to earlier failure, tending to present a brittle behavior, and the folding mechanism
is limited. For this reason, materials with intermediate stiffness values can be an alternative for
achieving bistability. We have confirmed this fact by analyzing a Kresling cell composed of UTL
resin (45), with a Young’s Modulus around E ~ 600 MPa, where bistability was observed. Therefore,
it opens the possibility of miniaturizing bistable Kresling cells using a single material. These
configurations can be used to fabricate downscaled Kresling cells, even at the micro-scale, thereby
overcoming the dimensional limitations of traditional 3D printing technologies.

In addition, we investigated the role of creases in monostable Kresling assemblies. Using a

multi-material printing approach, we evaluated and fabricated Kresling structures with variable
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stiffness assigned to the creases in even and odd stories. For instance, during the folding process,
deformation occurs first in the stories with softer creases, such as those made of DM60, and later
in the stiffer ones made of DM95. This approach facilitates the control and programming of the
energy landscape. Notably, we also achieved an increase of up to approximately 140% in stored

energy by including stiffer creases.

3.1 Limitations

We validated the numerical predictions experimentally, considering manufacturing limitations
to prevent defects at the time of fabricating 3D-printed parts. Dimensional constraints due to
technological limitations restrict the size of 3D-printed multi-material Kresling cells that can be
tested. In the case of the PolyJet technique, load-bearing elements with cross-sections smaller than
0.6 mm tend not to cure well and may exhibit defects during the photopolymerization and layer
deposition processes. However, considering cross-sections above 1.0 mm helps reduce defects and
they remain intact during post-processing operations (42). During subsequent compression tests
on Kresling cell samples, we observed a reduction in stiffness and peak loads of 30% after the
second test and 50% after the third test. This can be attributed to crack initiation in thin creases
made of rubbery photopolymers. This suggests material degradation in thin cross-sections made
of the rubbery material after repeated loading cycles, potentially compromising its suitability for
long-term applications. This observation highlights potential limitations in the reliability of this
technique for experiments on multi-material Kresling cells, indicating potential long-term durability
concerns. However, fabricating on a larger scale could be an option to overcome these manufacturing

dimensional limitations, although it might result in higher material costs and longer working times.

4 Concluding remarks

We proposed alternatives to explore the untapped engineering potential of Kresling origami beyond
traditional paper models. The advent of 3D printing has enabled the creation of complex multistable
structures with programmable energy landscapes inspired by Kresling patterns. However, this
approach also faces unique challenges related to manufacturing and material limitations, especially

at small scales and when addressing the visco-hyperelastic nature of photopolymers.
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Our study emphasized the critical role of crease design in achieving reliable multistability
in Kresling cells, highlighting overlooked parameters such as crease geometry and viscosity. By
modifying the crease cross-section, we obtained diverse energy landscapes ranging from bistability,
to monostability.

For instance, reducing the crease internal thickness s;, through proposed reduction factors RF, by
over 50% of the intact cross-section facilitated bistability, as confirmed by experimental validation
that accounted for manufacturing limitations and scalability considerations. Rubbery creases with
the highest relaxation modulus (G = 0.855MPa) compromised bistability, while those with lower
relaxation moduli preserved it. In addition, the observed bistability remained over different time
scales, including the initial, short- and long-term relaxation times regions. Consequently, we found
that the difference in relaxation modulus had a greater impact on bistability than the time scale
of analysis. Our results further indicate that the most significant changes in the energy landscape
were primarily attributed to modifications in the geometrical parameters of the crease cross-
section, which contributed to limiting the influence of visco-hyperelastic effects, especially in the
configurations with the smallest cross-sections generated with a reduction factor RF=0.80.

Considering a monomaterial approach, stiffness variations achieved through voids in crease
geometry improved the compression and expansion of Kresling cells and allowed energy storage
to be tailored. Materials with intermediate stiffness (E ~x600MPa) were identified as optimal for
foldable, bistable designs, particularly oriented to micro-fabrication.

Moreover, we explored the role of creases in monostable Kresling assemblies by varying their
stiffness. This allowed us to control the deformation of specific stories, enabling programmable
energy landscapes and adjustable energy storage based on the inclusion of softer or stiffer creases.

In summary, our findings address key 3D printing challenges and offer potential for applications
such as customized and scalable energy absorbers, actuators, and delivery robots that rely on
compact and programmable energy landscapes. These configurations advance our understanding

of Kresling-origami-inspired structures while also paving the way for future research.
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5 Materials and Methods

5.1 Initial Sizing of Kresling cells

The geometrical parameters that define the initial sizing configuration of the Kresling cells were
estimated using a five-parameters model (26), as further detailed in section[S.I.1]of Supplementary
Materials and Methods. Considering a Kresling cylinder defined by top and bottom polygons with
a number of sides n=6, under an axial displacement u, the total elastic stored energy of the creases
U can be defined by the sum of the deformation strain U}, and the rotational springs U contribution

of the peak and valley creases, by using the expressions:

1 1
Up = 5nKsp(b = bo)* + SnKse(c = ¢0)%, (1)
1 2 1 2 1 2
Us = EnKa(éa - 500) + EnKb(é‘b - 5b0) + EnKC(é‘C - é‘co) ) (2)
U=U,+U, 3)

Here, K, and K represent the stretching stiffness of the creases, while b and ¢ denote the final
lengths during the compression/expansion corresponding to the peaks and valleys, respectively. The
original peak and valley lengths are denoted as b, and c¢,, respectively. The terms K,, K, and K,
represent the rotational stiffness of the creases. The dihedral angles in the original configuration are
dao» Obos Oco, While those in the folded configuration are o, 95, d., corresponding to their respective
creases. An iterative process was performed applying Eq[3|to select the initial sizing configuration

that theoretically leads to a second local minimum of energy when 6U /6u=0 (46, 47).

5.2 Parametric Design

The cylindrical Kresling cells were designed as solid bodies in Autodesk Inventor in 1:1 scale
(x1), following the initial sizing configuration: polygons with n=6 sides, rotating at an initial angle
0, = /6 with respect to each other, and an aspect ratio h,/r=1.75. The panels were modeled with
a small thickness value with respect to the initial height (0.04 h,<s < 0.08 h,). In addition, rings

were included at the top and bottom of the cylinders to ensure a uniform rotation of the upper and
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lower polygons. Moreover, we created a small gap at the top and bottom intersections of the creases
with the rings to prevent stress concentrations, as illustrated in the 3D Kresling cell renders from
Fig.3A.

In the Multi-material approach, the creases of the Kresling cells were parametrically designed
with dimensional and geometrical variations. The dimensionless ratio w/s represents the creases
width, w, variation relative to its thickness, s, ranging within 0.50 < w/s < 2.00, and being grad-
ually reduced considering the reduction factors 0.25 < RF < 0.80. The generated configurations
were obtained by combining the mentioned parameters and they are detailed in section of
Supplementary Materials and Methods.

In the Mono-material approach, the Kresling cells were similarly designed following the initial
sizing configuration and incorporating the creases design from the case C11 RF=0.80. The latter
represents the most flexible crease with the lowest rotational stiffness (K= 1.26x10"> N.mm/rad).
The voids inclusions along the peaks and valleys, corresponded to a fraction of the total volume of
their respective full creases, as explained in section [2.5] Thereby, multiple Kresling cell configura-
tions for Multi-material and mono material approaches were exported as *.step and *.x; Parasolid

files, for the respective numerical simulations and 3D printing, respectively.

5.3 Numerical simulations and constitutive models

Quasi-static non-linear analyses were carried out in Abaqus/CAE Standard meshing the systems
with quadratic tetrahedron C3DIOMH elements due to the complexity of the geometry. This
type of mesh contains 10 node quadratic tetrahedron with hybrid modified constant pressure
elements. This choice was dictated by the hyperelastic nature of the rubbery material which is
nearly incompressible. Tie constraints were assigned to the panels, creases, top and bottom ring
surfaces to create a uniform contact among them. The defined boundary conditions at the bottom of
the cylinder constrained all the displacements and the rotations. An imposed vertical displacement
close to the one third of the initial height (= 1/3 h,) was applied at the top.

Simultaneously, the rotation of the upper part was also released to simulate the natural twisted
motion, characteristic of the Kresling patterns along with a compressive force. Furthermore, we

remark that the quasi-static simulations were conducted using a VISCO step to capture the time-
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dependent behavior of the visco-hyperelastic elements. The simulations proceeded until the target
displacement was reached, ensuring that while the panels made initial contact during the folding
process, overlapping was prevented. Further details are explained in section of Supplementary
Materials and Methods. Moreover, we incorporated calibrated material models obtained from their
respective material characterization tests, as described in section[S.1.5of Supplementary Materials
and Methods. The components made of rigid materials, such as the panels and rings, were modeled
with an elasto-plastic behavior. In contrast, flexible photopolymers were assigned to the creases,

being initially characterized by a Neo-Hookean strain potential energy function described as follows:
Uy = Cio(I1 - 3) 4)

where C10=G,/2, being G, the instantaneous shear modulus and 1, is the first stretch invariant.
This hyperelastic model assumes an almost incompressible material and was fitted to experimental
data to find the Cj( coeflicients, which define the rate-independent behavior (48). Subsequently, the
viscoelastic effects of the rubbery materials were then incorporated into the hyperelastic model. The
Prony parameters dimensionless weight g; and relaxation time 7; characterize the time-dependent
behavior associated with viscosity (49). They were determined by a non-linear regression analysis by
fitting them to the relaxation test data, as detailed in section of Supplementary Materials and

Methods. We then applied the obtained Prony parameters to the constants within the strain energy

o

function Uy (t), which is defined by the instantaneous constant Clo’

and the visco-hyperelastic

relaxation function can be expressed as follows:

N
1_281‘(1 —e_t/Ti)) ®)
i=1

In the context of Polyjet photopolymers, the selected rigid material for the panels in all the

numerical simulations of multi-material cases was VeroBlack (VB). Regarding the flexible creases,
the rubbery digital material DM60 was used for the first parametric study (section[2.). In subsequent
analyses, we included additional rubbery photopolymers with different relaxation moduli and
viscosity than DM60, such as Agilus30 (AG30) and digital materials DM70, DM85, and DM95,
to evaluate and predict the effects of viscosity on bistability (section [2.3). The duration of each
numerical simulation using the VISCO step, was set equal to the initial, short-term and long-term

relaxation times exhibited by the different rubbery materials, based on their relaxation times 7; from
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the Prony series. For the mono-material approach, flexible photopolymers used in other 3D printing
techniques were also considered, including Origin 402 (Direct Light Processing), IP-PDMS and

UTL-BMF (Two-photon polymerization for micro-fabrication).

5.4 Fabrication of Multi-material Kresling cells

The Kresling cell samples were fabricated following the framework of Polyjet multi-material
technique. It is important to remark that cross-sections of structural elements lower than 1.0 mm
demand special attention during the Polyjet process. They are prone to exhibit defects and demand
extremely careful post-processing operations. For this reason, the printed Kresling cells were scaled
three times to make the printing feasible, maintaining the ratios and proportions previously detailed
in the parametric design section video S6 and section of Supplementary Materials and
Methods. Based on the materials we used in the numerical simulations, the panels were fabricated
with VeroBlack (VB). For the creases, the following flexible materials were employed in the different
Kresling cells: AG30, DM60, DM70, DM85 and DM95.

The 3D CAD models were generated in Autodesk Inventor, to be subsequently printed in
a Stratasys J750 printer series. The selected printing setting was High-Mix mode with a layer
resolution thickness of 27 microns and glossy surface finishing. The majority of the supports grids
made of SUP706B material surrounding the printed Kresling cells were manually removed, and
briefly rinsed in water for less than five minutes. A prolonged contact between small elements or
multi-material interfaces, lower than 1.0 mm cross-section, with water or alkaline solutions lead
to a premature breakage and detachment. Further details on the fabrication of 3D printed Kresling

cells protocol are presented in section of Supplementary Materials and Methods.

5.5 Experimental validation

A series of quasi-static experiments were carried on the 3D printed Kresling cells to validate
the numerical simulations results. A compression load was applied at the top with an imposed
displacement of approximately u ~ 1/3 h,. The experimental setup, described detail in section
- Fig.[S10]of Supplementary Materials and Methods, consists on a fixture that resembles free

rotation assigned to the top of the sample, with a fixed bottom fixture to prevent displacements
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and rotations. Thus, replicating the natural twist under compression inherent in Kresling patterns
kinematics (26). The connections between the sample and the setup were implemented in two
different systems: (i) A female-male pinned system, and (ii) Use of magnets to prevent the sliding
of the samples. The cross-head testing speed was 0.1 mm/sec, which can be considered sufficiently
slow to capture viscosity effect (relaxation time 77 = 180 s), as well as the most representative

bistable behavior according to numerical predictions across different time scales.

5.6 Microscopic characterization of 3D printed creases

The real dimensions of the 3D printed samples were determined via a stereo microscope (Nikon
SMZ800) equipped with an ED Plan 1.5x lens and with a DS-Ri2 camera. The analyzed creases be-
long to the configurations presented in case C8 with gradual reductions between 0.25 < RF < 0.80.
We compared the mean values of the real measurements of the 3D printed Kresling cells, versus the
exact measurements of the CAD models, as detailed in section [S.1.10]of Supplementary Materials
and Methods. Thus, we determined the mean percentage error, Mpg (%) between the dimensions
from the tested samples and those used in the numerical simulations. Hence, this estimated error
was incorporated to update the analyzed geometrical configurations and considering the loss of

dimensional accuracy attributed to the Polyjet printing process.
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S.1 Materials and Methods

S.1.1 Initial sizing of Kresling cells

We determined an initial geometrical configuration of the Kresling cell that could potentially exhibit
bistability. The approach relied on a five-parameters model incorporating the elastic deformation of
stretchable mountain and valley creases (14, 46) with their rotational behavior (26). As illustrated in
Fig.[STIA, we first considered the following initial geometrical parameters: an initial height denoted
by h,, upper and lower polygons with n sides circumscribed within a radius r, an initial relative
angle 8, between these polygons. The original lengths of the creases, denoted by a, (side of the
polygon), b, (peaks), and ¢, (valleys), and their corresponding dihedral angles 6,,, 950, and 9.,

can be calculated using the expressions:

a, = 2rsin (g) (S1)
2 il b, 2

b, = 4 [4r* sin > + h; (S2)

2

0, + il

Co = |4r2sin’ T”‘ + h2 (S3)

ho
840 = arctan (S4)

6 6
2r sin (?0) sin (?0 + %)

o) 2
h2 cos (90 + —ﬂ) —r2 [cos (90 + f) — Cos (f)]
n n n

O0po = T — arccos 3 (S5)
5 Vg 4
h +r2 [cos (6, + =) —cos |—
n n
) ’ T T\ 1?2
h; cos (0,) —r” |cos (0, + —| —cos | —
O0cpo = 7T — arccos n 2" (S6)
5 b bl
h2 +r2 |cos (6, +—) —cos|—
n n

When the compressive load F' is applied to the top of the Kresling cell, it produces an axial
displacement u and a twisting rotation ¢ between the upper and lower polygons, while the final

height of the Kresling cell becomes h, as shown in Fig.[STA. Furthermore, the length of the crease
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Figure S1: Initial sizing of the Kresling cell. (A) Kresling cell geometrical parameters during compression/expansion
process. (B) Initial assessment of monostable (M) and Bistable (Bi) configurations through a five-parameters model,
by considering their initial relative angle 6, and aspect ratio ho/r and rotational versus stretching stiffness ratio K/Kj.
(C) Normalized Force (F) and Energy (U) plots versus normalized displacement u/r of the configuration 6, = 30° and

ho/r=1.75.
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corresponding to the side length of the polygon a, remains constant with negligible deformation, as
it remains circumscribed within the polygon’s circle of radius r. At this stage, it can be considered
that a = a,, and the lengths of the creases corresponding to the peaks, b, and valleys, ¢ with their

respective dihedral angles ¢, d5, and d, are defined as follows:

b= \/4r2 sin’ (%) + (hy — u)? (S7)
2
¢+—
c= |4r2sin® 5 Ay (hy —u)? (S8)
0, = arctan ho —u (S9)
2r sin ? sin ?+£
2 2 n

2

(hy — u)?cos (¢ + 27”) -r? [COS (¢ + %) — €08 (%)]

(S10)

0p = 7T — arccos

(hy —u)? +r? [cos ((;5 + %) — COs (%)]2

(hy = u)? cos (¢) - 12 [cos (‘“%) _COS(%)]Z (S11)

(hy — u)? +r? [cos (¢ + %) — Cos (%)]2

During the compression process, the total elastic energy stored in the creases, denoted as U,

0. = T — arccos

can be calculated as the sum of the deformation energy of the peaks and valleys, Uj, and the
contribution from the rotational springs of the creases, Uy, as given by the following expressions,

which are defined by five parameters: b, c, d,, 6 and J..

1 1
Ub = EnKvb(b - b0)2 + EnKsc(c - C0)2 (812)
1 2 1 2 1 2
Us = EnKa(da —040)" + El’le(5b —0po)” + Ean(fsc — 6co) (S13)
U= Ub + Us (814)
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Here, K, and K. represent the stretching stiffness of the peaks and valleys, respectively, while
the rotational stiffness of the creases is represented by K, for the side polygon, K}, for the peaks,
and K, for the valleys. The total potential energy in the Kresling cell, IT(«) , can be determined by
the sum of the total elastic energy stored in the creases U, and the work done by the external force

F that produces an axial displacement u:
II(u) =U - Fu (S15)

If we adhere to the principle of minimum total potential energy, we can identify an equilibrium
state (47). Thus, we assume that:

oIl /6u =0 (S16)

Then, we can define the applied axial force F, under the mentioned equilibrium conditions and

in terms of the total elastic energy stored energy in the creases, as follows:
F =6U/éu (S17)

The previously mentioned equations enabled a preliminary evaluation of various geometrical
configurations to determine the initial sizing of a Kresling cell. The energy landscapes calculated
from Eq. determined which initial geometrical parameters can be used to shape Kresling cells
prone to ensure a second local of energy minimum and satisfying the condition §U/éu = 0, for
further analyses. The geometrical configurations considered in this preliminary assessment include:
aspect ratios h, /r within the range of 0.4 to 2.25, polygons with a number of sides equal to n=6 and
initial rotational angles 6, ranging from 7 /4n to 37 /n (7.5° < 6, < 90°). The total elastic energy
stored in the creases U, and axial displacement u, were normalized to represent dimensionless
quantities in the plots.

The stretching stiffness K is defined in terms of Young’s modulus £, and cross-sectional area
A as K; = EA. By defining the stretching stiffness of the peaks and valleys per unit length, we
obtain Ky, = K;/b, and K. = K;/c,, respectively. Similarly, the rotational stiffness K, can be also
expressed per unit length, with K, = Kb, for the peaks and K. = K¢, for the valleys. For this initial
analysis, the contributions of both stiffness components to the total elastic energy were introduced
as three different ratios: K/K; =0,0.5 x 1074, 1.0 x 107%. As a result, two main scenarios were

observed during the compression process of the Kresling cells: Bistability (Bi) and Monostability
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(M), as illustrated in the plots of Fig.[STB. When considering a rotational stiffness K = 0, the results
correspond to those obtained by the bar and truss model defined by two parameters, (b,c).
Configurations with an initial rotational angle within the range 15° < 6, < 60° and an aspect
ratio h,/r > 1.5 exhibited an apparent bistability. Those Kresling cells showed normalized energy
landscapes with a second local of energy minimum (6U/du = 0). In addition, we observed that
the majority of configurations with initial rotational angles lower than 6, = 40° and h,/r <1.5
tended to present a monostable behavior. While those with higher values, 6, > 60°, allowed small
rotational displacements limiting the folding process and the panels tended to overlap prematurely.
In contrast, Kresling cells with initial relative angles 6, < 7.5°, were prone to buckle during the
initial folding stages, displaying an almost rigid behavior and higher energy values. Furthermore,
Fig. presents the corresponding normalized force and elastic energy landscapes obtained for
the configuration: 6, = /6, and h,/r=1.75. It exhibited a potential tendency towards bistability in
all the evaluated scenarios (K/K; = 0,0.5 x 1074,1.0 x 10‘4). Thus, we selected these geometrical

parameters for the initial sizing of the Kresling cells used in the subsequent analyses.

S.1.2 Parametric design of 3D Kresling cells

The 3D CAD parametric models were generated in Autodesk Inventor following the initial geo-
metrical configuration: polygons with n = 6 sides, initial relative angle 6, = 7/6, initial height
versus radius ratio h,/r=1.75, and panels thickness 5 ~ 0.04h,. The parametric design process
is summarized in Fig. Firstly, the upper and lower polygons are defined in 2D sketches and
rotating with respect to each other in an angle equal to 6, = 30°. The panels thickness s was defined
through an offset to the polygons’ perimeter and the width limit of the creases was determined by
auxiliary circles with radius r’. Then, 3D sketches were constructed to enable the 3D structure of
the panels, and by using the command Boundary-surface their profiles can be linked to form the
surfaces of the panels. Next, the surfaces were merged with the Patch command, and volumetric
bodies were obtained to shape the panels and the creases. As a result we obtained a 3D Kresling
cell which represent the intact crease case.

The creases were designed with gradual reductions in their cross-sections, preserving a V

shape at the top and a variable circular shape at the bottom. A cutting radius s, =r"- RF is
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Figure S2: Parametric design process of a 3D Kresling cell. Creation of former 2D and 3D sketches in Autodesk

Inventor.

defined according to the imposed reduction factors from 0.25< RF < 0.80, decreasing the external
thickness s and an internal thickness s; is obtained. Afterwards, the 3D CAD model were saved as

* step files for the Abaqus/CAE numerical simulations.

S.1.3 Numerical simulations considerations

The entire modeling process for simulating the kinematics of Kresling cells and generating the
load paths for the parametric study is schematized in Fig. The input 3D CAD files for the
Kresling cells models were saved as *.step files to be imported from Abaqus/CAE Standard for
their assembly. Traditionally, 3D printed Kresling cells have been designed and modeled as linear
elastic shells. This is particularly applicable to polymeric sheets with thicknesses less than 1 mm,
while also considering the use of rigid or flexible materials. However, employing rubbery creases,
which are treated as nearly incompressible material, requires the use of hyperelastic models with
3D hybrid modified formulation elements to achieve more realistic results.

In addition, complex and irregular 3D geometries such as Kresling inspired structures, require
the use of tetrahedron elements besides the application of free mesh with partition strategies.

Thus, intricate shapes can be accurately modeled while maintaining computational efficiency at the
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same time. Given the hyperelastic nature of the flexible Polyjet photopolymers, the selected mesh
was composed by 10 node quadratic tetrahedron with hybrid modified constant pressure elements
C3D10MH. An adaptive mesh refinement study determined a suitable mesh density that enables
the achievement of convergence within a balanced computational time.

Four types of tetra-mesh from a coarse to refined number of elements were analyzed comparing
their obtained maximum force, that leads to the highest stress concentrations on the Kresling cell,
as well as the CPU time and refinement error (Rg (%)), as described in Fig. M The latter was
obtained by using the expression: 100 (Fys; — Fa4)/ Fp4, where Fyy; represents the maximum force
obtained in the numerical simulation with each mesh case i, Fjy4 is the maximum force from the
last attempt corresponding to the very refined mesh case M4. The selected mesh corresponded to
the case M3, which is formed by minimum three elements assigned across the panels and creases
cross-sections. This refined mesh fitted more accurately to the Kresling cell geometry, reducing
modeling errors and ensuring convergence.

Moreover, kinematic couplings were assigned between the reference points RP and the top and
bottom ring surfaces to effectively transmit the applied displacement, and the assigned boundary
conditions along the entire cylinder. The constitutive models used in the analyses included an
elasto-plastic model for the rigid photopolymers assigned to the panels, and a visco-hyperelastic
model for the flexible materials assigned to the creases.The material characterization data necessary
to define these constitutive models were obtained through uniaxial tests, detailed in the following

sections [S.1.5]and [S.1.6] and summarized in Tables[S1]and

Furthermore, tie constraints were used to create a uniform contact among the panels, creases,
top and bottom ring surfaces. Fixed boundary conditions were applied at the bottom of the cylinder,
specifically at reference point RPy, to restrict displacements and rotations in all directions. A
vertical displacement, u, approximately equal to one third of the initial height of the Kresling cells
(= 1/3 h,), was imposed at the top in the respective reference point RP, and the corresponding
applied Force was computed to determine the respective force/displacement curves. This target
displacement prevents further overlapping of the panels during the compression of the Kresling
cell.

The rotation at the top was released to simulate the natural twisting plus compression motion

of Kresling cells. A VISCO step was used to perform quasi-static analyses, incorporating time-
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Figure S3: Numerical simulations process in Abaqus/ CAE Standard. Mesh generation, boundary conditions (BC)

and example of obtained results in terms of Von Mises stress in MPa, VM, and vertical displacement, u, in mm. *RP»

represents the reference point where the vertical displacement is applied, generating a restoring force Fr considered

for the load path plots.
4 T T T T Mesh # elements Cr, PA, CPUme (S)  Rg (%)
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4 ]
£ M4 230964 0.20 0.40 60982 -
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Figure S4: Mesh refinement study parameters. Based on the maximum force achieved, Max(F), total number of

elements, including number of seeds along creases (cry) and panels (PAy), CPU time in seconds and refinement error

percentage (Rg (%)).
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dependent material behavior without inertia effects. The geometric nonlinearity option (NLGEOM)
was activated to consider large deformations in the analysis. We first focus on the initial relaxation
region of the analyzed rubbery materials within a time defined as 7;°, during which most of the stress
decay occurs, as shown in Fig. @B, to observe the viscosity effects during bistability achievement.
Then, the total simulation duration #, was estimated to lie within this initial relaxation region by
using a velocity of 0.1 mm/s to reach the target displacement u. The VISCO step was defined with
a initial time size set to 0.01¢,, while the maximum and minimum increments were 0.1z, and 107,
respectively. Thus, we can accurately capture the viscosity effects and ensure the convergence by
reducing the number of increments in the solver. In addition, we performed simulations for each
rubbery material over extended time periods to predict whether bistability can also be achieved
in both short- and long-term relaxation regions. For instance, to determine the total simulation
duration ¢, for the short-term relaxation region, we considered a reference time 7 equal to the
highest 7; term from the Prony series described in Table In this region, a lower stress decay in
the relaxation curve of each rubbery material was also observed. For long-term effects, when the
material is fully relaxed and the stress relaxation curve approaches a horizontal asymptote, we used

total simulation durations ¢, of nt, with n=6.

S.1.4 Design and Fabrication of samples for tensile tests

Polyjet photopolymers main groups can be classified into rigid thermoplastics, rubbers and a hybrid
types of composites, so called Digital Materials. The latter represent a combination between glassy
and flexible polymers, with various levels of shore hardness from A30 to A95. In the present study,
the selected rigid photopolymers were Vero Yellow, VeroBlack and Digital ABS. The tested rubbery
Digital Materials were: AgilusClear 30 (Shore A30), FLXA-YT-S60 DM (Agilus30 + Vero Yellow,
Shore A60), FLXA-9970 DM (Agilus30 + VeroClear, Shore A70), FLXA-9985 DM (Agilus30 +
VeroClear, Shore A85) and FLXA-YT-S95 DM (Agilus30 + VeroYellow, Shore A95). In this study
they are referred with the acronyms AG30, DM60, DM70, DM85 and DMO95, respectively.

All the samples were fabricated using a 3D printer Stratasys J750 with a layer resolution of
approximately 27 microns in High-Mix mode. The support material was first smoothed in a soapy

water solution bath for one hour and then, it was removed using water jetting.
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Figure S5: Specimens made of photopolymers for uniaxial tests. (A) Fabrication via Polyjet technique with orien-

tations along the X,Y,Z axis of the build tray. (B) Experimental setup for uniaxial tests.

For the uniaxial tensile tests, dog-bone-shaped samples were designed following the ASTM
D638 standard for rigid polymers, and the ASTM D412 standard for rubbers. Five samples were
fabricated for each material type. They were printed in three directions: longitudinal (X), transversal
(Y) and perpendicular (Z) to the build tray, as shown in Fig. [S5/A. For the stress relaxation tensile
tests conducted on the rubbery material, dog-bone sample design adhered to the ISO 6914, ASTM
E328, and ASTM D412 standards. Three samples were printed longitudinally oriented to the build

tray for each type of Digital Material.

S.1.5 Uniaxial tensile tests and constitutive models

The uniaxial tests were carried with a MIDI 10 testing machine by imposing a cross-head velocity
of 0.1 mm/sec, as shown in Fig. [S5B. The tests stopped when fracture occurred in the sample.
During the test both applied displacement and load were recorded. In particular, two types of load
cells with different capacities were used to measure the applied tensile load during the experiments:
100kN for rigid polymers, and 10 kN for rubbery materials. The data rate acquisition was equal to
1 sample/sec. The constitutive models employed in the numerical simulations, were obtained based

on experimental data from the previously mentioned uniaxial tests. The average among the different
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printing orientations, in X,Y and Z, was considered for the mechanical properties estimation. In the
case of rigid photopolymers, such as VeroBlack (VB), an elasto-plastic model was selected. The
average stress-strain curves and Young’s modulus are shown in Fig. and B, respectively. The
Young’s Modulus was estimated from the slope of the o — £ curves within the elastic range. The
latter is determined by fitting a straight trendline to the experimental curve, which extends from the
beginning of the curve to the point where the R? values approach closest to 1. The elasto-plastic
behavior was modeled in Abaqus/CAE standard, considering the experimental (o — &) curves by
using the material calibration utility.

First, the nominal (o — &) curves inputs get converted into true strains (&;) and true stresses
(07) with the expressions: &; = In(1 + &) and 0; = o (1 + €). The Young’s modulus is calculated as

previously explained and used as an input datum. Thus, the yield point can be identified and the

P PL

plastic strains, & L and stresses, oFL, are finally estimated to characterize the elasto-plastic model:
(e = FL + £PL). Moreover, we evaluated the loss of mechanical properties over time of rigid
photopolymers from the Vero group, such as VeroBlack (VB). Similarly, samples were fabricated
and tested one day, one and six months after, following the mentioned uniaxial test procedure.
Rubbery materials are mostly defined by strain energy potential functions due to their hypere-
lastic behavior. Their mechanical characterization requires a further step to find a model that fits
the nominal curves (o — &) with the tensile tests of the Digital materials group: AG30, DM60,
DM?70, DM8S5 and DM95. Considering that the experimental data was obtained from uniaxial tests,
the material constants C;; from linear hyperelastic polynomial models were fitted to the nominal
stresses. Thus, they were calculated through a least-squares method in Abaqus/CAE material model

calibration tool (48). Then, the relative error (RE) of the stress measure is minimized and it is

defined by the expression:

o'l.th 2
1- , (S18)

ex
o; P

n
RE = Z
i=1

ex . . . .
where o, P represents the experimental stress measures and O'l-th is the nominal stress. In this case,

the latter is determined by the tensile uniaxial stress 77, which is derived from the strain energy

potential U and the stretch in the loading direction Ay, as follows:

Ti =2(1-27°) (/ha—g + a_g)
ol dl

Thereby, a Neo-Hookean model fitted the nominal stresses of the tested digital materials group

(S19)
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Figure S6: VeroBlack experimental data. (A) Average Stress-Strain (o — &) plots. (B) Average Young’s modulus E
+/- standard deviation obtained per each group of samples with a printing orientation in X, Y, and Z axis, and overall
average (VB Avg*). Loss of mechanical properties, including: (C) Young’s modulus, E, and (D) Ultimate tensile
strength, o,, due to aging effects analyzed using data obtained from tests conducted after 1 (E=100%), 30, and 180

days of sample fabrication.

from AG30, DM60 to DM95 as Fig. depicts. The fitting was obtained with relative errors
between the range 5% < RE < 10%. Moreover, this strain energy function is described in Invariant

base form as: Uy = Co(I; — 3), and its equivalent stretch base is written as:

_ M0

Uv =77

(A3 + 23+ 2724, - 3), (S20)

Additional mechanical properties, including average elongation at break (g5, ), were determined from
the experimental curves (o — &), as shown in Fig.[S7B. Other hyperelastic models, such as Mooney-
Rivlin and Polynomial N=1, showed higher relative error values ranging from 10%< RE < 32%,

and they also presented unstable strains during the calibration process.
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Figure S7: Rubbery Digital materials (DM) experimental data. (A) Average stress-strain curves obtained during the
uniaxial tests (Exp) and hyperelastic models fitting with Neo-Hookean (NH-Fit) strain energy potential. (B) Average
Elongation at break, €, +/- standard deviation. (*) Average obtained per each group of samples with a printing

orientation in X and Y axis.

S.1.6 Stress Relaxation tests and Viscoelastic parameters

Rubbery materials present high sensitivity to strain rates and time-dependent behavior, which can be
further characterized by a visco-hyperelastic model. The time dependent constitutive equations that
define linear viscoelastic materials, are based on the stress and strain history, loading-displacement
rate and loading application time. Polyjet elastomers usually exhibit a significant relaxation of their
peak stresses in a short time span, some of them reaching it in 20 seconds (39).

The most common viscoelastic models are based on the combination in series or in parallel
of linear elastic (springs) and viscous components (dashpots). Then, the viscoelastic components
can be determined by conducting a stress relaxation test and therefrom, obtaining the subsequent
Prony parameters. The load and time data considered for determining the viscoelastic properties are
recorded once the imposed strain value &g is reached. The initial part of loading phase, where the
strain is rapidly increasing, is usually disregarded. After this initial phase, a time t=0 is established
as the starting point for analysis under a constant strain &g, together with an initial stress o and
the corresponding elastic instantaneous modulus E,. Therefore, the time dependent stress o () is
defined by:

o(t) = E(t)e, (S21)
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Considering that the material behaves as a Maxwell solid, the time dependent relaxation modulus
E; can be expressed in terms of a Prony series expansion and calculated from E, (49), as shown
below:

E(t)=E,

N
1 - ZEl-(l —e—f/ff)) (522)
i=1

where E; corresponds to the “’i-th” Prony coefficient, N represents the total number of terms of
the Prony series, and 7; is the relaxation time constant. Thereby, the Tensile relaxation modulus E (¢),
can be determined by E(7) = o (t)/&o. Then, the Shear relaxation modulus G (¢), can be obtained
by the expression: G(t) = E(¢)/[2(1 + v)] and the corresponding values per each analyzed rubbery
photopolymer are illustrated in Fig.[S8A. Furthermore, the tensile instantaneous relaxation modulus
E,, corresponding to the time t=0, is defined by E, = 0¢/&¢. Similarly, the shear instantaneous
relaxation modulus G,, is calculated by G, = E,/[2(1 + v)]. The Poisson’s ratio v of elastomeric
photopolymers and composites with shore hardness between DM60 and DM95, can vary from
0.48 to 0.46, and 0.49 for the rubbery AG30 (38). The rate-independent behavior of the material
can be defined as hyperelastic under large strains in Abaqus/CAE solvers and being described by
the instantaneous relaxation tensile modulus. After, we estimated a normalized shear relaxation
modulus from the experimental curve (G () — t) employing the expression: G, = G(t)/Gy. Thus,
Eq. @ can be re-written in terms of the normalized shear relaxation modulus G,(¢), and the

dimensionless Prony constants g;, as follows:

N
Gu() = 1= i1 = e/ (523)
i=1

In addition, the long-term shear relaxation modulus G is defined by the shear instantaneous

relaxation modulus G, and the dimensionless Prony constants g;, as given by Eq.

N
1= gi) (524)

i=1

G =G,

Assuming a linear viscosity and nearly incompressibility of the material, given that the Poisson’s
ratio of the studied rubbery materials ranges within 0.46 and 0.49, the long-term tensile relaxation
modulus can be estimated as: Es = G [2(1 +v)].

The viscoelastic material properties, defined by the dimensionless Prony series parameters, can

be determined by fitting them to experimental relaxation test data. For this reason, a series of stress
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relaxation tests in tension were performed by adapting the ISO 6914 and ASTM E328 standards.
Three different constant strain values, g9 = 10%, &9 = 15%, and &9 = 25%, were imposed on each
rubbery sample.

The stress relaxation tests for rubbery materials were conducted with a MIDI 10 testing machine
by imposing a cross-head velocity of 0.1 mm/sec and at controlled room temperature (23 °C). A
10 kN load cell measured the applied tensile load. When the displacement corresponding to the
target strain was reached, the machine stopped and the load relaxation was monitored. At this point,
an initial time ¢ = 0 is established in the force-time curve (F —¢), along with its corresponding peak
force F, and a constant strain &,. The tests were considered concluded when the force-time curve
(F —t) approached an almost horizontal asymptotic line.

Subsequently, the stress depending on time o-(¢) was calculated by dividing the force F(¢) by
the cross-sectional area of the sample A,. This conversion transformed the force-time (F —¢) curve
into a stress-time (o —t) curve, which begins at the peak stress o,. Next, the average (o —t) curves
for each group of samples subjected to constant strain values, g9 = 10%, &y = 15%, and g9 = 25%,
were obtained.

Since the Kresling creases are designed to overcome large deformations, and ISO 6914 standards
recommend the use of high strain values, we selected the maximum strain value (£,=25%) for
estimating the Relaxation modulus and the Prony series parameters. The difference between the
G (1) and G, (t) curves obtained from the average values and the selected maximum strain (&,=25%)
was not significant. We then applied these obtained Prony coefficients to the constants within the
strain energy function Uy(?) in order to introduce the rate-dependent behavior associated with
viscosity. Consequently, in the case of a Neo-Hookean material model defined by an instantaneous

constant C?

To» the visco-hyperelastic relaxation function can be expressed as follows:

UN(t) = Cfo

N
1= sl - e‘f/ff)) (825)
i=1

These parameters are then incorporated into a visco-hyperelastic constitutive model described by
Eq. for subsequent numerical simulations in Abaqus/CAE.

Then, we fitted the obtained Prony parameters to the experimental data (G, —t) using a damped
least squared method (DLS). It was implemented using a Matlab optimization toolbox script based

on the Levenberg—Marquardt algorithm. As a result, the selected fitting coefficients correspond to
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the lowest goodness of fit values, as shown in Fig. [S8B. The latter is obtained from the norm of

residuals, denoted as ||e|| and calculated as follows:

(S26)

where the residuals e; represent the sum of the differences between the observed y; and predicted
values f(x;), being defined as: e; = y; — f(x;).

(A) (8)
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Figure S8: Stress relaxation tests of the Rubbery Digital Materials AG30 to DM95. (A) Relaxation function G(t)
with the corresponding Instantaneous modulus G,. Units: MPa. (B) Experimental and fitted data of the Normalized
shear relaxation modulus Gy (t), in logarithmic scale with their respective goodness of fit in terms of the norm of residuals

le]l, where: AG30 |le|| = 3.9 x 107%, DM60 ||¢|| = 4.0 x 10~*, DM70 |le|| = 5.8 x 107*, DM85 |le|| = 3.1 x 1073,
DMO5 |le|| = 2.5 x 1073,

Table S1: Elastic and Elasto-plastic materials mechanical properties.

Material E MPa) oy (MPa) & (%) o, (MPa)
VeroBlack 1543.58 19.79 15.75 44.89
UTL Resin (BMF)  567.00 10.00 40.80 14.10
Origin 402 42.00 - 230 55
IP-PDMS 15.30 - 240 -
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Table S2: Flexible materials mechanical properties and Prony series parameters. *E,, E,

G,, G units in MPa

AG30 DMe60 DM70 DMS8S DM95
Cio=0.111 Cio =0.157 Ci0=0.163 Cio =0.237 Cio = 0.457
E, =0.545 E,=0.782 E, =1.398 E, =3.200 E, =6.621
E. =0.459 E. =0.651 E. =0.938 E, =1.676 Es =2.498
G, =0.183 G, =0.268 G, =0.479 G, =1.095 Go =2.267
Go =0.154 G =0.220 G =0.317 G =0.570 G =0.855

8i Ti 8i Ti 8i Ti 8i Ti 8i Ti

0.030 7.612 0.035 10350 0.060 10.717 0.071  10.787  0.143  11.435
0.052 64359 0.055 98390 0.099 93980 0.132 78.847 0.189  93.977
0.045 333.610 0.048 547.863 0.090 498.890 0.131 404.112 0.154 520.646
0.030 2310.2422 0.041 4151.017 0.089 3632.445 0.146 3116.457 0.137 3697.450

S.1.7 Fabrication protocol via Polyjet 3D printing technique

The 3D printed Kresling unit cell fabrication process contemplates three main stages: Design, 3D
printing and Post-processing. During the design stage, the 3D CAD parametric models were gener-
ated in Autodesk Inventor. The selected geometrical configuration for the experimental validation of
the Kresling cells is: C8 case, polygons with n = 6 sides, 6, = 7/6, h,/r=1.75, t ~ 0.04h,, creases
width/thickness ratio w/s =1.50 and RF < 0.66. The Kresling cell dimensions /,=17.5 mm and
r=10 mm, were scaled three times in order to make feasible their printing and to avoid the di-
mensional limitations regarding manufacturing. The other geometrical parameters and ratios were
maintained to keep the proportions of the analyzed Kresling cells. The parametric design process
was previously summarized in Fig. section[S.1.2] The 3D CAD model were saved as Parasolid
files (*.xp) to facilitate the exportation of the assembled components in a unique file for 3D printing.
At the same time, it enables to identify separately the different components of the Kresling cells,
such as panels, peaks, valleys and rings, for the assignation of different materials.

For the printing process, the GrabCAD software was used for the preparation of the printing
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files to be send to a Stratasys J750 printer series, including automatic slicing. Once the files are
imported, the respective dimensions and position along the build tray are controlled. Since the
panels were conceived to be made of rigid materials, the VeroBlack photopolymers was selected.
In the case of the creases, the following flexible materials were employed in different Kresling
cells: AG30, DM60, DM70, DM85 and DM95. The selected support material was SUP706B with
the standard grid density mode. It is important to remark that supports were also assigned to the
panels during the printing process, because of the presence of inclined faces with respect to the
build tray. The printing setting was the following: High-Mix mode with a layer resolution thickness
of 27 microns and matte surface finishing.

The post-processing operations include mostly the supports removal, which demands to be
meticulously carried on specially considering the small dimensions of the Kresling cells creases
being at the edge of Polyjet manufacturing limitation < 1.0 mm. The prolonged contact with
water or alkaline solutions of small elements and multi-material interfaces lower than 1.0 mm
cross-section, lead to a premature breakage and detachment. For this reason, the exposure of the
3D multi-material sample to humidity should be controlled. As an alternative, the support residues

were carefully removed mostly by hand and briefly rinsed in water for less than five minutes.

Magnets for
the setup link

Figure S9: Fabrication of multi-material Kresling cells. (A) Polyjet printing process and multi-material deposition
of rigid (VB), flexible (DM60) and support grid (SUP706B). (B) Support material distribution along the samples
with matte surface finishing. (C) 3D printed Kresling cell from case C8 (RF=0.80) used in the experiments, with the

following dimensions: r=30, hg=3, h,=52.50, and thickness of the panels 5=2.25. Units: mm. Scale bar: 10 mm.
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S.1.8 Experimental setup

A further experimental validation was carried on to involve quasi-static tests on the 3D printed
Kresling cells to validate the numerical simulations results. A compression load was applied at
the top of the Kresling cell with a Messphysik u-strain loading frame machine (from ZwickRoell,
0.01 pm stroke measurement resolution). The experiments were performed at a testing speed of
0.1 mm/sec. The applied Load F and displacement u were measured with a AEP TYPE F1-1kN load
cell and with a displacement transducer mounted internally to the testing machine, respectively. The
tests were stopped once a displacement u = 1/3h, was applied the sample. The experimental setups,
shown in Fig. consists of two fixtures. The top fixture guarantees free rotation, ¢, during the
folding of the Kresling (allowing the natural twist under compression inherent to Kresling patterns
kinematics), while the bottom fixture prevent both displacements and rotations (26). The free
rotational fixture is formed by a rotating plate coupled to a ball bearing (SKF 608 SKF 8x22x7)
and a rotational fastener. The Kresling cell samples are directly linked to the top and bottom plates
through two different systems. The first one consisted in a female-male connection system used for
the Kresling cells with thicker creases, as shown in Fig.[STOA. Pins were created on the surfaces of
the samples rings and distributed to coincide with the vertices of the hexagonal polygons.

These pins were then inserted into the corresponding holes located in the plates. However, in
this system, when using Kresling cells with thinner creases, the samples tended to slide. To prevent
this problem, we implemented a second connection system based on magnets applied to the top
and bottom of the samples and the plates, as described in Fig.[STOB. The components of the first
setup were 3D printed using the PolyJet technique on a Stratasys J750 3D printer, with tolerances of
+0.2 mm for holes and insertions. In contrast, the second setup was printed using the DLP technique
through an Origin-One printer, with tolerances between +0.1-0.25 mm for the magnet holes and

insertions.

S.1.9 Hands-on experimental validation of Bistability

A manual compressive force was applied to the top of the Kresling cells, allowing free rotation at
the top while constraining all displacements and rotations at the bottom. This action enabled us

to recreate their spontaneous rotation, reflecting the characteristic kinematics during compression.

S20



(A) F
Rotating fastener —‘ Iu

Ball bearing

Free rotating plate

Pin

-
A

! = 3
Kresling unit cell

Coupling-hole

Fixed support plate

Rotating fastener —¢ I

Ball bearing

Free rotating plate

Magnet ———@ ]
S Y s

Kresling unit cell

Magnet
Insertion hole

Fixed support plate

Figure S10: Experimental setup for compression test with an applied Load F and displacement u. Exploded
schemes of the experimental setups with a fixture at the top, enabling a free rotation ¢, and a fixed support fixture at

the bottom with the following connection systems: (A) Pins and (B) Magnets.

Thus, we conducted a hands-on validation of bistability to determine which Kresling cells remained
in the folded configuration after the manual force was applied. The applied compressive force
generated an axial displacement u of approximately one third of the initial height 4, of the Kresling
cell.

For example, we compared the behavior of Kresling cells with creases made of the rubbery
material DM60 generated with gradual reductions (C8 RF=0.80) versus its corresponding intact
creases cell, as shown in Fig. [STTJA. We also observed the effects of viscosity in Kresling cells (C8
RF=0.80) with creases made of different rubbery photo-polymers AG30, DM60, DM70, DM85
and DM95, as illustrated in Fig. . In these hands-on experiments, we confirmed that all
Kresling cells with creases generated with RF=0.80 remained in the folded configuration for over

60 seconds after the application of the manual compressive force, thus validating the achieved
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t=0s t=0s
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t>180s t>180s
* Bi aM

AG30 DM60 DM70 DM85 DM95

RF=0.80 Int

Figure S11: Hands-on experimental investigation demonstrating the achievement of bistability (Bi) in 3D-printed
multi-material Kresling cells of Case 8, by comparing their folding process. (A) RF=0.80 versus Intact creases cell
(Int). (B) Different RF=0.80 cells with creases made of rubbery photopolymers: AG30, DM60, DM70, DM85, and
DMO95. *Note: The Kresling cells were fabricated with an initial height h,=52.5 mm, and rigid panels made of VB.

The applied force aimed to achieve an axial displacement u~1/3h,.

bistability in the experiments conducted with the testing machine. Conversely, the Kresling cells
with creases made of the highly viscous DM95 or the intact cell immediately returned to their
original configuration, exhibiting a monostable behavior. The complete hands-on experimental

validation is further described in videos S2 and S4.

S.1.10 Microscopic characterization of 3D printed creases results

The dimensional accuracy of the printing process affects the real dimensions of the 3D printed
Kresling cells. The measurements of the peaks and valleys creases from the case C8, with gradual
reductions between 0.25 < RF < 0.80, were analyzed. We established a comparison between those
obtained in reality after the Polyjet process and the corresponding exact measurements in the CAD
models. A transversal section passing through the half of the Kresling cell was considered to design
the sample for the characterization of the geometry of both types of creases, peaks and valleys. This
sample replicates the intermediate substrates of the 3D printed Kresling cell.

The real dimensions of 3D printed samples were determined via a stereo microscope (Nikon
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SMZ800) equipped with an ED Plan 1.5x lens and with a DS-Ri2 camera. The mean values and the
corresponding standard deviations (SD) were obtained from three real measurements (n=3) of the
geometrical parameters characterizing the creases, as illustrated in Fig. and Fig. for both
creases, peaks and valleys. We determined the corresponding mean percentage error, Mpg (%)
between the dimensions from printed samples (Real) and those used from the CAD models, as

follows:

100 ~n (Mcap — M
00 ( CAD Real) (527)

Mpg (%) = - Z Mrowr
ea

n=1

The obtained real and exact measurements of the analyzed creases, with the respective Mpg (%)
error are described in Fig. in Fig. Fig. and Fig. including peaks and valleys.
The measurements taken along the multi-material interface between the rigid and the rubbery
photopolymer show differences with an error between 2 < Mpg (%) < 8. The transition zone
where the two materials are merging is not homogeneous. For this reason, the dimensions along
the edges of the 3D printed creases were not easily measured, potentially leading to an error. Since
the internal thickness s; is a crucial parameter for generating gradual reductions along the creases,
we have selected this control parameter to evaluate the impact of differences between the exact and
real measurements on the resulting experimental load paths and compare them to the numerical
results. Subsequently, an updated CAD model of Kresling cells may be created by adjusting the
internal thickness s; according to the mean real measurements of the analyzed 3D printed creases.

Furthermore, we also observed that when the exact dimensions were designed less than 1.20 mm,
the obtained real dimensions in the 3D printing process led to greater values exhibiting a nega-
tive error -1 < Mpg (%) < -25. Specifically, in the cases related to creases with smaller internal
thickness s; generated with the reduction factors ranging within 0.57 < RF < 0.80. In contrast, a
positive error is achieved within 3 < Mpg (%) < 10, when the exact dimensions from the CAD
files are above 1.20 mm, such as the cases with reduction factors between 0.25 < RF < 0.50. It
means that the resulting creases exhibited smaller real dimensions. This fact can be attributed to the
printing limitation of fabricating defective load bearing elements with cross-sections around 1 mm,
besides the characteristic dimensional accuracy of Polyjet J750 printers. In the case of printing
with High-Mix mode, where the layer height reaches 13-16 microns, the exhibited dimensional
accuracy ranges within +0.06-0.1% for part lengths under ~100 mm (42), even grasping values

around +0.10 mm in real applications.
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Figure S12: Microscope characterization of 3D printed creases. (A) Intermediate transversal section of the 3D
printed Kresling cells from case C8 with gradual reduction factors ranging between 0.57 < RF < 0.80 (scale 3:1).
Comparison between the real (3DP) and the exact (CAD) measurements of the corresponding: (B) Peaks and (C)

Valleys. Units: microns. Scale bar:1 mm.
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Figure S13: Microscope characterization of 3D printed creases. (A) Intermediate transversal section of the 3D
printed Kresling cells from case C8 with gradual reduction factors ranging between 0.25 < RF < 0.50 (scale 3:1).

Comparison between the real (3DP) and the exact (CAD) measurements of the corresponding: (B) Peaks and (C)

Valleys. Units: microns. Scale bar:1 mm.
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1
Geometrical Parameters RF=0.80
Peaks measurements
Meas, r'ye e Sip Sip Sap Spat1,p  Seazp arcp lip lp
REAL 1 1805.42 1977.77 786.63 2336.39 2323.52 1842.47 1701.28 3843.36 421.35 487.45

2 2049.90 2123.95 743.41 2567.10 2559.89 1840.53 1753.66 3947.92 335.62 347.94

3 1797.31 1897.40 734.76 2350.34 2249.66 1856.68 1751.66 3913.40 549.37 538.36

Mean 1884.21 1999.71 754.93 2417.94 2377.69 1846.56 1735.53 3901.56 43545 457.92

SD 143.55 114.86  27.79 129.36 162.05 8.82 29.68 53.28 107.57 98.59

CAD 1 2173.78 2173.14 710.08 2512.84 2508.53 1815.27 1732.96 3773.05 368.96 373.54
Mee (%) 13.32 7.98 -6.32 3.78 5.22 -1.72 -0.15 -3.41  -18.02 -22.59

Valleys measurements

Meas, r'yy r'yv Siv Siv Sov Spa1,v Spaz,v arcy liv lv
REAL 1 2095.18 1666.30 639.68 1868.19 1894.55 1851.63 1900.95 3814.28 792.53 656.45
2 2079.31 1987.27 639.68 1893.64 1732.67 1909.83 1733.86 3800.96 727.67 638.99
3 2393.20 2258.65 553.23 1876.31 1821.23 1861.73 1793.39 3626.94 986.39 889.77
Mean 2189.23 1970.74 610.86 1879.38 1816.15 1874.40 1809.40 3747.39 835.53 728.40
SD 176.82 296.52  49.91 13.00 81.06 31.10 84.69 104.53 134.61 140.02
CAD 1 2453.70 2455.58 577.80 1857.34 1869.41 1815.27 1732.61 3653.10 844.40 824.90
Mee (%) 10.78 19.74 -5.72 -1.19 2.85 -3.26 -4.43 -2.58 1.05 11.70

Geometrical Parameters RF=0.74

Peaks measurements
Meas; r'e rap Si,p S1.p Sap Spat,p Spazp arce lip lp
REAL 1 2044.80 1999.25 829.85 2481.65 2331.27 1913.83 1727.26 3460.71 448.72 518.83
2 1956.78 1980.91 829.85 2453.26 2460.88 1864.04 1748.99 3423.04 610.22 702.65
3 1843.65 1930.68 899.85 2406.09 2390.02 1827.35 1756.54 3427.05 609.43 707.45
Mean 1948.41 1970.28 853.18 2447.00 2394.06 1868.41 1744.26 3436.93 556.12 642.98
SD 100.84 3550 4041 3817 6490 43.41 15.20 20.69 93.01 107.54
CAD 1 2173.78 2173.14 843.42 2512.84 2508.53 1815.27 1732.96 349455 502.29 506.87
Mee (%) 10.37 9.33 -1.16 2.62 4.56 -2.93 -0.65 165 -10.72 -26.85

Valleys measurements

Meas, r'yy r'yv Siv S1v Sav Spatv Spaz,v arcy iy by
REAL 1 2064.31 2149.35 899.01 1870.29 1712.57 1885.14 1682.04 3703.44 877.00 801.23
2 2457.63 2458.85 622.39 1894.36 1911.09 1839.71 1799.86 3562.02 872.50 885.46
3 2277.95 2257.50 855.78 1962.17 1809.93 1856.07 1739.69 3725.26 899.96 807.23
Mean 2266.63 2288.57 792.39 1908.94 1811.20 1860.31 1740.53 3663.57 883.15 831.31
SD 196.90 157.07 148.81 4764 99.27  23.01 58.91 88.62 1473 46.99
CAD 1 2453.70 2455.58 674.91 1857.34 1869.41 1815.27 1732.61 3652.71 958.31 940.19
Mee (%) 7.62 6.80 -17.41 -2.78 3.1 -2.48 -0.46 -0.30 7.84 11.58

Figure S14: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with
0.74 < RF < 0.80. Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage

error Mpg (%) with respect to the exact (CAD) measurements. Units: microns.
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Geometrical Parameters RF=0.66

Peaks measurements

Meas, r'p

rap

Sip

S1p

Sap

Spa1,p

Spazp

arc;

lp

e

REAL 1 1925.05
2 1762.63

3 2076.20

Mean 1921.29

SD 156.82

1952.67
1897.89
2037.56
1962.71

70.37

1089.18
1097.82
976.80
1054.60
67.52

2355.76
2367.57
2358.92
2360.75

6.11

2441.13
2346.68
2403.50
2397.10

47.55

1882.14
1840.89
1846.38
1856.47

22.40

1701.58
1818.57
1773.73
1764.63

59.02

3306.21
3144.04
2918.37
3122.87

194.78

592.87
656.89
746.48
665.41

77.16

661.01
707.30
754.29
707.53

46.64

CAD 1 2173.78
Mee (%) 11.61

2173.14
9.68

843.42
-25.04

2512.84
6.05

2508.53
4.44

1815.27
-2.27

1732.96
-1.83

3494.55
10.64

502.29
-32.48

506.87
-39.59

Valleys measurements

Meas, v

r'yv

Siv

Sq1v

Sav

Spat,v

Spaz,v

arcy

I1,V

I2,V

REAL 1 2276.31
2 2200.04

3 2299.29

Mean 2258.55

SD 51.95

2216.95
2255.46
2135.98
2202.80

60.98

812.56
924.94
726.12
821.21

99.69

1870.04
1816.62
1771.06
1819.24

49.54

1810.70
1842.53
1696.32
1783.18

76.89

1858.39
1738.40
1777.74
1791.51

61.17

1766.07
1790.08
1736.65
1764.27

26.76

3234.99
3205.89
3083.61
3174.83

80.33

987.65
914.09
1163.36
1021.70
128.08

735.99
880.13
1060.41
892.18
162.55

CAD 1 2453.70
Mee (%) 7.95

2455.58
10.29

791.14
-3.80

1857.33
2.05

1869.41
4.61

1815.27
1.31

1732.61
-1.83

3044.68
-4.27

1100.72
7.18

1084.35
17.72

Geometrical Parameters RF=0.57

Peaks measurements

Meas, r'p

L]
Map

Sip

S1.p

Sap

Spa1,p

Spazp

arcg

lhp

Lp

REAL 1 1843.58
2 1951.89

3 2072.20

Mean 1955.89

SD 114.36

1878.57
2039.94
2191.38
2036.63

156.43

1262.07
1244.78
1236.13
1247.66

13.21

2383.19
2474.39
2409.32
2422.30

46.97

2311.19
2412.00
2481.15
2401.45

85.47

1788.05
1804.26
1818.14
1803.48

15.06

1730.54
1770.34
1762.74
1754.54

21.13

2845.25
2813.76
2531.63
2730.21

172.70

843.64
815.30
910.13
856.36

48.68

920.16
898.31
947.11
921.86

24.44

CAD 1 2173.78
Mpe (%) 10.02

2173.14
6.28

1224.37
-1.90

2512.84
3.60

2508.53
4.27

1815.27
0.65

1732.96
-1.25

2697.78
-1.20

883.24
3.04

887.84
-3.83

Valleys measurements

Meas, r'v

\ ]
v

Siv

S1iv

Sav

Spa1,v

Spaz,v

arcy

I1,V

IZ,V

REAL 1 2430.01
2 2266.27

3 2438.34

Mean 2378.21

SD 97.03

2413.36
2237.62
2431.34
2360.77

107.03

847.14
847.14
838.50
844.26

4.99

1888.91
1888.21
1886.06
1887.73

1.49

1806.66
1807.67
1764.47
1792.93

24.66

1823.66
1846.33
1839.21
1836.40

11.59

1801.08
1794.40
1766.05
1787.18

18.60

2723.95
2855.89
2811.48
2797.11

67.13

1423.84
1149.21
1354.00
1309.02

142.73

1265.66
1090.58
1246.38
1200.87

96.00

CAD 1 2453.70
Mee (%) 3.08

2455.58
3.86

946.48
10.80

1857.34
-1.64

1869.41
4.09

1815.27
-1.16

1732.61
-3.15

2609.96
=717

1283.88
-1.96

1269.77
5.43

Figure S15: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with

0.57 < RF < 0.66. Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage

error Mpg (%) with respect to the exact (CAD) measurements. Units: microns.
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Valleys

Geometrical Parameters RF=0.50

Peaks measurements

Meas, rp

rap

Sip

S1.p

Sap

Spa1,p

Spaz,p

arcp

lp

Lp

REAL 1 1938.23
2 1975.79

3 2038.33

Mean 1984.12

SD 50.57

1904.66
2093.31
2035.59
2011.19

96.66

1296.64
1297.49
1327.49
1307.21

17.57

2318.11
2412.80
2436.15
2389.02

62.51

2340.35
2448.53
2402.00
2396.96

54.27

1784.59
1837.37
1904.94
1842.30

60.33

1781.64
1773.89
1810.34
1788.62

19.20

2361.64
2472.90
2531.46
2455.33

86.26

987.28
978.77
942.40
969.48

23.84

1017.38
1082.89
1078.77
1059.68

36.69

CAD 1 2173.78
MPE ((yo) 872

2173.14
7.45

1434.00
8.84

2512.84
4.93

2508.53
4.45

1815.27
-1.49

1732.95
-3.21

2361.35
-3.98

1043.96
713

1048.55
-1.06

Valleys measurements

Meas, v

]
v

Siv

S1v

Sav

Spat,v

Spaz,v

arcy

I1,V

I2,V

REAL 1 2322.80
2 2324.10

3 2152.60

Mean 2266.50

SD 98.64

2075.29
231217
2078.57
2155.34

135.83

985.45
1100.89
950.87
1012.40
78.56

1767.51
1826.11
1866.78
1820.13

49.90

1769.52
1806.05
1746.68
1774.08

29.95

1807.56
1837.07
1827.55
1824.06

15.06

1783.69
1812.26
1724.35
1773.43

44.84

2401.85
2260.21
2407.22
2356.43

83.37

1563.69
1538.72
1193.45
1431.95

206.93

1661.65
1469.46
1197.10
1442.74

233.43

CAD 1 2453.70
Mee (%) 7.63

2455.58
12.23

1058.19
4.33

1857.34
2.00

1869.41
5.10

1815.27
-0.48

1732.61
-2.36

2283.87
-3.18

1421.29
-0.75

1408.90
-2.40

Geometrical Parameters RF=0.40

Peaks measurements

Meas, r'e

\ ]
Map

Sip

S1.p

Sap

Spa1,p

Spaz,p

arc;

lip

I2,P

REAL 1 1825.07
2 2018.29

3 1992.82

Mean 1945.39

SD 104.98

1936.91
2079.35
1978.89
1998.38

73.19

1547.33
1538.68
1555.97
1547.33

8.65

2324.26
2382.63
2281.62
2329.50

50.71

2263.44
2377.57
2336.26
2325.76

57.79

1799.77
1818.97
1842.91
1820.55

21.61

1714.02
1730.74
1790.18
1744.98

40.03

2053.97
2040.43
1869.76
1988.05

102.67

1205.87
1236.40
1337.59
1259.95

68.95

1207.09
1260.02
1353.99
1273.70

74.40

CAD 1 2173.78
Mee (%) 10.51

2173.14
8.04

1610.08
3.90

2512.84
7.30

2508.53
7.29

1815.27
-0.29

1732.96
-0.69

1889.97
-5.19

1268.96
0.71

1273.56
-0.01

Valleys measurements

Meas, 'y

]
Iav

Siv

S1v

Sav

Spat,v

Spaz,v

arcy

ly

I2,V

REAL 1 2408.36
2 2276.83

3 2267.32

Mean 2317.50

SD 78.83

2429.37
2280.70
2228.39
2312.82

104.27

1296.64
1262.07
1322.58
1293.76

30.36

1822.79
1798.03
1807.67
1809.50

12.48

1793.45
1792.89
1799.34
1795.23

3.57

1820.92
1799.84
1788.70
1803.15

16.36

1740.57
1740.85
1746.69
1742.70

3.46

2044.27
1797.87
1589.70
1810.61

227.55

1532.16
1433.65
1479.77
1481.86

49.29

1569.42
1416.88
1414.80
1467.03

88.68

CAD 1 2453.70
Mee (%) 5.55

2455.58
5.81

1214.91
-6.49

1857.34
2.58

1869.41
3.97

1815.27
0.67

1732.61
-0.58

1827.24
0.91

1613.72
8.17

1603.74
8.52

Figure S16: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with

0.40 < RF <0.50. Mean values, and standard deviation (SD) of the real measurements, besides the mean percent-

age error M pg (%) with respect to the exact (CAD) measurements. Units: microns.
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Valleys

Geometrical Parameters RF=0.33

Peaks measurements

Meas, r'e

L]
Map

Sip

S1.p

Sap

Spa1,P

Spaz,p

arcp

I1,P

I2,P

REAL 1 2007.90
2 2028.15

3 2092.83

Mean 2042.96

SD 44.36

2155.04
2180.96
2118.11
2151.37
31.59

1590.55
1694.28
1633.77
1639.53

52.10

2333.07
2323.11
2312.08
2322.75

10.50

2430.29
2403.11
2334.74
2389.38

49.23

1859.66
1828.61
1848.64
1845.64

15.74

1726.92
1707.10
1697.99
1710.67

14.79

1846.22
1693.91
1580.72
1706.95

133.23

1322.36
1380.78
1468.83
1390.66

73.73

1490.03
1442.26
1542.94
1491.74

50.36

CAD 1 2173.78
Mee (%) 6.02

2173.14
1.00

1760.09
6.85

2512.84
7.56

2508.53
4.75

1815.27
-1.67

1732.96
1.29

1575.47
-8.35

1418.96
1.99

1423.56
-4.79

Valleys measurements

Meas, r'y

]
v

Siv

S1v

Sav

Spat,v

Spaz,v

arcy

I1,V

I2,V

REAL 1 2342.48
2 2245.91

3 2350.44

Mean 2312.94

SD 58.19

2213.98
2181.91
2343.54
2246.48

85.58

1495.46
1538.68
1495.46
1509.87

24.95

1748.28
1837.17
1730.69
1772.05

57.08

1824.03
1711.47
1711.92
1749.14

64.86

1720.14
1798.85
1750.96
1756.65

39.66

1731.25
1711.47
1664.61
1702.44

34.22

1467.53
1433.87
1075.60
1325.67

217.22

1701.94
1951.36
1941.09
1864.80

141.13

1518.26
1710.22
1873.85
1700.78

177.98

CAD 1 2453.70
Mee (%) 5.74

2455.58
8.52

1318.87
-14.48

1857.34
4.59

1869.41
6.43

1815.27
3.23

1732.61
1.74

1522.77
12.94

1742.04
-7.05

1733.69
1.90

Geometrical Parameters RF=0.25

Peaks measurements

Meas;, rp

e

Sip

S1p

Sap

Spa1,p

Spazp

arc,

lp

lp

REAL 1 2090.82
2 2136.14

3 2012.82

Mean 2079.93

SD 62.38

2177.36
2273.04
2091.49
2180.63

90.82

1970.90
1823.94
1875.81
1890.22

74.53

2370.55
2385.47
2412.80
2389.61

21.43

2333.97
2560.47
2424.35
2439.60

114.02

1846.06
1860.38
1807.23
1837.89

37.50

1729.49
1773.35
1716.87
1739.90

29.64

805.27
1032.96
1280.27
1039.50

237.57

1798.33
1676.56
1580.28
1685.06

109.27

1948.19
1690.60
1665.81
1768.20

156.37

CAD 1 2173.78
Mee (%) 4.32

2173.14
-0.34

1947.58
2.95

2512.84
4.90

2508.53
2.75

1815.27
-1.25

1732.96
-0.40

1182.07
12.06

1606.46
-4.89

1611.07
-9.75

Valleys measurements

Meas;, v

r',y

Siv

S1v

Sov

Spa1,v

Spaz,v

arc,

I1,V

I2,V

REAL 1 2381.80
2 2244.79

3 2293.10

Mean 2306.56

SD 69.49

2225.93
2173.83
2291.09
2230.28

58.75

1504.11
1513.93
1555.97
1524.67

27.55

1817.79
1691.98
1758.96
1756.24

62.95

1776.20
1675.51
1720.56
1724.09

50.44

1804.06
1732.54
1808.49
1781.70

42.63

1740.32
1718.32
1714.21
1724.28

14.04

1346.03
1351.15
1307.83
1335.00

23.67

1662.17
1855.47
1803.89
1773.84

100.09

1605.54
1924.44
1740.83
1756.94

160.06

CAD 1 2453.70
Mee (%) 6.00

2455.58
9.17

1449.74
-5.17

1857.33
5.44

1869.41
7.77

1815.27
1.85

1732.61
0.48

1142.11
-16.89

1902.48
6.76

1896.18
7.34

Figure S17: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with

0.25 < RF <0.33 Mean values, and standard deviation (SD) of the real measurements, besides the mean percent-

age error Mpg (%) with respect to the exact (CAD) measurements. Units: microns.

S29



S.2 Supplementary Text

S.2.1 Intact Kresling cell 3D analysis

Based on the initial geometrical configuration that leads to bistability, we parametrically designed
the 3D Kresling cells, as further detailed in[S.1.2| The analyzed group of intact cases was conformed
by Kresling cells with a variable width of the creases. This term is expressed in terms of the width
versus thickness ratio, denoted as w/s. Thus, the number of intact cases analyzed ranged within

(0.50< w/s < 2.00) with their respective notation: Int 1 to Int 11, as shown in Fig.|S18/A.

w
(A) Case wis Pl I
(Int) e
Multi-Material Intact case Intact crease 1 0.50 A
2 0.60
3 0.75 -y
4 0.90
5 107 &% 15
6 120 8
7 1.35
8 150 <>
9 165 [ Is
10 1.80 ) 1 :
11 200

(B) (©)

u (mm)

Figure S18: Kresling cells with intact creases analysis (A) Geometrical details of Intact creases cases, from Int 1 to Int

11, defined in terms of the ratio w/s. Load paths within the ranges: (B) 0.50 < w/s < 2.00 and (C) 1.50 < w/s < 2.00.

The load paths obtained from the numerical simulations, depicted in Fig. [SI8B, reveal that
despite the utilization of flexible creases, the intact cases did not achieved the theoretical bistability

as predicted by the preliminary five-parameters model assessment. Specifically, the force values did
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not reached values below zero, preventing a second local minimum energy state. We have observed
that the intact cases with narrower creases (Int 1 to 4) ranging between (0.50< w/s < 0.90), tended
towards monostability and become highly stiff instead. In contrast, the intact cases (Int 5 to 11) with
wider width creases (1.07< w/s < 2.00), exhibited a monostable behavior. Although using flexible
creases facilitates the folding process, the Kresling cell quickly reverts to its initial configuration
once the axial load is applied, and second stable state is still not achieved, as evidenced by the load
paths in Fig.[S2C. This behavior can be attributed to the restoring force related to the viscoelastic
nature of photopolymers. Therefore, these initial results indicate that utilizing elastomeric creases

requires further design strategies to potentially achieve a bistable configuration in practice.

S.2.2 Creases design: Complementary results

The parametric study of the Kresling cells with the creases design, results from the numerical
simulations in Abaqus/CAE Standard, shown in Fig. We assessed how the gradual reductions
creases affected the energy landscape and the transition form a bistable (Bi) to a monostable (M)
behavior. As narrower the internal thickness s;, the Kresling cell tends to achieve bistability.

This is especially observed in wider creases with a ratio w/s > 1.20, with an internal thickness
s; and reduction factors between 0.66 < RF < 0.80, taking values between 0.58 > s;/s > 0.05. It
is evidenced in the load paths with their corresponding stored energy landscapes, U, from Fig.
to Fig. Moreover, the sequential experiments conducted on the Kresling cells within the range
potentially exhibiting bistability (0.66 < RF < 0.80) are presented in Fig. The results reveal
a loss of load capacity of approximately 50% due to the degradation of the thin rubbery creases
(RF=0.80). In contrast, thicker creases (RF=0.66) appeared more resistant, losing around 30%
of load capacity. The analyzed Kresling cell cases were designed according to the geometrical

parameters detailed in Fig. for a 1:1 scale.
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K Case (C)

(N.mm/rad) 1 2 3 4 5 6 7 8 9 10 1
>0.05 1 T I T T T T I T T T T I T T T T I T
0.04 0.8
0.03 0.6
£ i M
[ L
0.02} 0.4
: - Lk
0.01} 02f =M *e *
- % Bi o .
- F 5% Limit Bi ) Bi
I 0 i 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
0.5 1 1.5

w/s

Figure S19: Parametric study of the creases geometry. Geometrical parameters with their attained Rotational
Stiffness (K), that lead to monostability (M) or bistability (Bi). 'Limit Bi’: boundary between (Bi) and (M) determined
experimentally. *The crease edge limit determines the range of reduction radius factors, RF, to maintain a Circular

shape at the lower part of the crease. Results from Kresling cells at 1:1 scale.

(A) (B) ()
e 5 S R
T T T T 15 T T
RF=0.33
30 RF=0.50 ] 301 ] RF=0.40
RF=0.66 RF=0.40 RF=0.50
2201 RF=0.80 1 2% RF=0.50 Z 8t S .
w w RF=0.66 w o
10F - 10+ g RF=0.80
O 1 1 0 1 1 0 1 1
0 0.5 1 15 0 0.5 1 15 0 0.5 1 15
u (mm) u (mm) u (mm)
c—oeme o yOM) o utmm
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Figure S20: Load paths and stored energy (U) landscapes variation according to the crease internal thickness (s;)
decrement based on the reduction factors RF. (A) C1 (w/s = 0.50), (B) C2 (w/s = 0.60) and (C) C3 (w/s = 0.75).

The corresponding curves were generated until the panels started to be in contact during the numerical simulations.
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Figure S21: Load paths and stored energy (U) landscapes variation according to the reduction factors RF. (A)
C4 (w/s =0.90), B) C5 (w/s = 1.07), and (C) C6 (w/s = 1.20). The corresponding curves are presented in the
following order RF: 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80.
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Figure S22: Load paths and stored energy (U) landscapes variation according to the reduction factors RF. (A)

C7 (w/s = 1.35), (B) C8 (w/s = 1.50) and (C) C9 (w/s = 1.65). The corresponding curves are presented in the

(B)

* 2" Local
energy min. RF=0.25
q
E 5t
)
*

RF=0.80

0 1 1

0 2 4

following order RF: 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80.
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Figure S23: Load paths and stored energy (U) landscapes variation according to the reduction factors. (A) C10
(w/s = 1.80), and (B) C11 (w/s = 2.00). The corresponding curves are presented in the following order RF: 0.80,
0.74, 0.66, 0.57, 0.50, 0.40, 0.33, and 0.25.
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Figure S24: Effect of the degradation of the rubbery crease cross- sections on the load path after performing
sequential experiments on the same samples. (A) RF=0.80, (B) RF=0.74 and (C) RF=0.66. Kresling cells case C8

fabricated with creases made of DMG60, at 3:1 scale.
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Geometrical Parameters Geometrical Parameters

Case# wis s r RF Sc S; sils Case # wis s r RF S S; sils
1 0.50 1.71 1.00 0.80 0.80 1.31 0.77 8 1.50 0.85 1.50 0.80 1.20 0.25 0.30
0.66 0.66 1.38 0.81 0.74 1.1 0.30 0.35
0.50 0.50 1.46 0.85 0.66 0.99 0.35 0.41
2 0.60 1.43 1.00 0.80 0.80 1.03 0.72 0.57 0.86 0.42 0.50
0.66 0.66 1.10 0.77 0.50 0.75 0.48 0.56
0.50 0.50 1.18 0.82 0.40 0.60 0.55 0.65
0.40 0.40 1.23 0.86 0.33 0.50 0.60 0.71
3 0.75 1.14 1.00 0.80 0.80 0.74 0.65 0.25 0.38 0.67 0.78
0.66 0.66 0.81 0.71 9 1.65 0.85 1.65 0.80 1.32 0.19 0.23
0.50 0.50 0.89 0.78 0.74 1.22 0.24 0.28
0.40 0.40 0.94 0.83 0.66 1.09 0.30 0.35
0.33 0.33 0.98 0.85 0.57 0.94 0.38 0.45
0.25 0.25 1.02 0.89 0.50 0.83 0.44 0.52
4 0.90 1.14 1.20 0.80 0.96 0.66 0.58 0.40 0.66 0.52 0.61
0.74 0.89 0.70 0.61 0.33 0.54 0.58 0.68
0.66 0.79 0.74 0.65 0.25 0.41 0.65 0.76
0.57 0.68 0.80 0.70 10 1.80 0.85 1.80 0.80 1.44 0.13 0.15
0.50 0.60 0.84 0.74 0.74 1.33 0.18 0.22
0.40 0.48 0.90 0.79 0.66 1.19 0.25 0.30
0.33 0.40 0.94 0.82 0.57 1.03 0.34 0.40
0.25 0.30 0.99 0.87 0.50 0.90 0.40 0.47
5 1.07 0.86 1.08 0.80 0.86 0.43 0.50 0.40 0.72 0.49 0.58
0.74 0.80 0.46 0.53 0.33 0.59 0.55 0.65
0.66 0.71 0.50 0.58 0.25 0.45 0.63 0.74
0.57 0.61 0.55 0.64 1" 2.00 0.85 2.00 0.80 1.60 0.05 0.06
0.50 0.54 0.59 0.69 0.74 1.48 0.11 0.13
0.40 0.43 0.64 0.75 0.66 1.32 0.18 0.22
0.33 0.35 0.68 0.79 0.57 1.14 0.28 0.33
0.25 0.27 0.72 0.84 0.50 1.00 0.35 0.41
6 1.20 0.86 1.20 0.80 0.96 0.38 0.44 0.40 0.80 0.45 0.53
0.74 0.89 0.41 0.48 0.33 0.66 0.52 0.61
0.66 0.79 0.46 0.53 0.25 0.50 0.60 0.70
0.57 0.69 0.51 0.60
0.50 0.60 0.56 0.65 V+Circular w

040 048 062 072 X
033 040 066 077 crease design
025 030 071 082 s
7 135 085 135 080 108 031 037
074 100 035 041
066 089 040 047
057 077 047 055 . T
050 068 052  0.61 Crease cutting | , o !
040 054 058  0.68 radius limit /. /
033 045 063 074
025 034 069 080

Figure S25: Geometrical Parameters of creases with gradual reductions. Dimensions taken from the top of the

Kresling cells. Units: mm, scale: 1:1.
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S.2.3 Estimation of Rotational Stiffness in Creases

Whether a rubbery material is considered for the design of the creases, large deformations are
expected to be developed. The V-shape+Circular cross-section of the creases can be simplified into
an equivalent rectangular strip that delimits the zone predominantly under bending. Its dimensions
are the width w and the internal thickness s;, where the latter varies according to a reduction factor
RF. Thereby, we assessed the effects of the decrement of cross-sections on the rotational stiffness,
K, of the designed creases. The angular rotation ¢, corresponding to a given bending moment
M applied on the equivalent section, can be estimated considering the formulations of bending
of an incompressible elastic Neo-Hookean block proposed by (44). This method assumes that the
deformed configuration of the block follows the shape of a planar sector of a cylindrical tube with
a thickness s, an initial angle y; and a radius 7, as shown in Fig. . The last two terms define
the cylindrical coordinates of the system, thus: 7e[7,7 ¢ + s¢] and ¥e f[—y;, ¥;], being the out
of plane terms neglected. The term 7 can be calculated by fulfilling the impressibility constraint,
where the deformed section is equal to the initial area defined by s; and w. Then, the following

relation can be established:
— w S Sf
re= - =
T 2yisp 2

Considering a Neo-Hookean response of the section, one of the principal stress components 7y, in

(S28)

cylindrical form is defined as:

w? 6%2 -2

w2 4lﬂl.2(Ff + Sf)2
—_— + —
8y2rt  w?

T,(r) =G _
W( ) o 4¢/12(7f+sf)2 w2

2

2) . (S29)

where, G, is the initial shear modulus and the thickness s of the deformed configuration can be

obtained by the following expression:

f 2

w A\

sp=——\-1+1/1+4y>L (S30)
! wiV2 fw

The bending moment M, corresponding to the stress on the deformed configuration, is calculated

by the following integration in the interval [7¢,7 s + s¢]:

7f+Sf
M = f 7T, (F)d 7 (S31)
Ty
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Using Eq[S31] we calculated the bending moment M of the equivalent cross- sections, M,
obtained at a given rotational angle ranging within 0 < ¢ < x/2. The analytical results of the
creases from cases C8 (w/s = 1.50) and C11 (w/s = 2.00) were selected for validation against
numerical simulations in Abaqus/CAE-Standard, as indicated in Fig. and C, respectively.
The thicknesses of the equivalent rectangular blocks correspond to the variable internal thickness
s; generated by reduction factors ranging from 0.25 < RF < 0.80. Moreover, the corresponding
mesh was created using biquadratic hybrid elements (CPESRH). The equivalent rectangular blocks
were subjected to bending until reaching a rotational angle of ¢ = 7/2 allowing us to obtain
the corresponding bending moment M. This demonstrated the close alignment between the FEA
calculations and the analytical formulation. Furthermore, the plots from Fig.[S27]depict the bending
moment values obtained in Eq|S31|at a given rotational angle 0 < ¢ < /2, applied to the equivalent
cross-sections corresponding to crease cases C1 to C11, along with their respective reduction factors

RF, as well as the related intact crease cases.
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Figure S26: Rotational stiffness calculation. (A) Bending of an incompressible rectangular block equivalent to the
crease cross-section. Comparison of analytical and FEA results for the bending moment, M, and angular rotation, ¢,
in cases: (B) C8 (w/s = 1.50) and (C) C11 (w/s = 2.00). *Note: Results are presented in the order reduction factors

ranging from 0.25 < RF < 0.80, representing a variable s;

Then, the rotational stiffness was obtained using the expression: K= M /. We observed that
rotational stiffness depends on the variation of internal thicknesses s;, their associated reduction
factors RF, and the width of the creases w. For instance, bistable creases with thinner internal

thicknesses, generated by reduction factors 0.66 < RF < 0.80 and ranges of 0.40 > s;/s > 0.30
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(C8)and 0.21 > s5;/s > 0.05 (C11), achieved the highest angular rotation value ¢ = 7/2 ~1.57 rad
at lower bending moments. Consequently, they exhibited higher flexibility and lower rotational
stiffness than their thicker creases counterparts, which fall within the ranges s;/s > 0.57 (C8) and

si/s = 0.37 (C11), as previously shown in Fig.
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Figure S27: Bending Moment M versus Rotational angle i/ curves. Calculation obtained from the equivalent cross-

sections of the cases C1 (A) to C11 (K), and Intact cases from 1 to 11.
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S.2.4 Effects of creases viscosity on bistability: Complementary Results

The assessment of bistability in Kresling cells with creases made from different rubbery materials
is presented in Fig. which is constructed from the load paths and energy landscapes illustrated
in Figs. based on analyses of Kreling cells at 1:1 scale (x1). We determined whether
creases with varying viscosity and relaxation moduli can still achieve bistability, as explored in
the parametric study in section 2.1. The numerical simulations were conducted for a time duration
corresponding to the limits of the initial (7°), short- (), and long-term (n7) relaxation regions to
predict whether viscosity effects influence the achievement of bistability at different time scales.
Moreover, we conducted experiments on Kresling cells (C8 RF=0.80, fabricated at a 3:1 scale) with
creases made of AG30, DM60, DM70, DM85, and DM95, as shown in Fig. An average load
capacity loss of approximately 50% was observed due to degradation of the crease cross-sections,
with lower peak load decrements in softer photopolymers (AG30, DM60, and DM70) which have

lower viscosity and relaxation moduli.

GOO

95 (MPa)
oM )

DM95=3.9G, A

pm70
{oeo

DM70=1.4G¢,

Higher viscosity

Figure S28: Visco-hyperelastic effects on bistability. Parametric study assessing the achievement of bistability
in creases made of rubbery materials (AG30, DM60, DM70, DM85, and DM95) with varying visco-hyperelastic
properties, characterized by relaxation modulus G. Where Ggp = 0.220 MPa. The study focuses on Cases C8, C9,
C10, and C11, designed with reduction factors RF=0.80, RF=0.74 and RF=0.66.
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Figure S29: Load paths and stored energy landscape variation of case C8 RF=0.80. Creases made of: AG30,

DM60, DM70, DM85 and DM95. Results for C8 RF=0.80 cells at a 1:1 scale (x1). Filled regions include FEA

simulations within the range 77 < 7 < nr.
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C8 RF=0.66

C8 RF=0.66
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Figure S30: Load paths and energy landscape variation of case C8 RF=0.66. Creases made of: AG30, DM60,
DM70, DM85 and DM95.Results for C8 RF=0.66 cells at a 1:1 scale (x1). Filled regions include FEA simulations

within the range 7/ < 7 < nrt.
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Figure S31: Load paths and energy landscape variation of case C11 RF=0.80. Creases made of: AG30, DM60,
DM?70, DM85 and DM95. Results for C11 RF=0.80 cells at a 1:1 scale (x1). Filled regions include FEA simulations

within the range 7/ < 7 <nr.
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Figure S32: Load paths and energy landscape variation of case C11 RF=0.66. Creases made of: AG30, DM60,

DM?70, DM8S5 and DM95. Results for C11 RF=0.66 cells at a 1:1 scale (x1). Filled regions include FEA simulations

within the range 7/ < 7 <nt.
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Figure S33: Effect of the degradation of the rubbery crease cross-sections on the load path. Experimental results
after performing three sequential tests on Kresling cells C8 RF=0.80 with creases made of: (A) AG30, (B) DM60,
(C) DM70, (D) DM85 and (E) DM95. Kresling cells fabricated at a 3:1 scale. Filled regions include FEA simulations
within the range 7/ < 7 < nt. (F) Experimental relaxation curve. Times 7}, T and nt, respectively considered for the
numerical analysis of viscosity effects. Experiments were performed at a test speed which correspond to a relaxation

time 7/=180s.
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S.2.5 Monomaterial Kresling cells: Complementary Results

The load paths and stored energy landscapes of the rubbery photopolymers DM60, DM70 and
DMSS5 are shown in Fig. They exhibited monostability and complement the analyses presented

for monomaterial Kresling cells, as described in Section [2.5]
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Figure S34: Load paths and energy landscapes of Monomaterial Kresling cells. Cases with variable void inclusions

along the creases: (A) M-1 and (B) M-2. Results of Kresling cells at a 1:1 scale.
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Caption for Video S1. Experimental validation of the parametric study on crease geometry
of 3D printed Kresling cells. Comparison between Numerical (FEA) and Experimental (Exp) load
path results from compressive tests on the C8 case. Kresling cell creases, generated with reduction

factors RF = 0.80, 0.66, and 0.50, exhibited bistable or monostable behavior.

Caption for Video S2. Hands-on Experimental validation of Bistability in 3D printed Kres-
ling cells. Evidence of bistable or monostable behavior in various Kresling cells with creases made
of DM60. The creases were generated with reduction factors in the range of 0.25<RF<0.80 and an

intact crease case (INT).

Caption for Video S3. Experimental validation of the crease degradation in 3D printed
Kresling cells. Effect of rubbery crease cross-section degradation on the load path, observed after

three sequential experiments on the same sample (C8, RF=0.80, creases made of DM60).

Caption for Video S4. Effects of viscosity on bistable Kresling cells: Hands-on experimental
validation. Evidence of bistable or monostable behavior in Kresling cells (C8, RF = 0.80) with
creases made of rubbery materials that have different viscosity and relaxation modulus compared
to DM60 (Ggp=0.220 MPa):AG30 (Go=0.7Ggp), DM70 (Go=1.4Ggp), DM85 (G=2.6Gg¢), and
DMO95 (Goo=3.9Gq).

Caption for Video S5. Programmable Monostable Kresling Assemblies. Compression test,
folding process, and load paths from numerical (FEA) and experimental (EXP) analysis for the
following cases: (i) all creases made of DM60, (ii) stiffer creases (DM95) in the even layers, and
(111) stiffer creases (DM95) in the odd layers. Numerical simulations stopped at the first contact

between panels.

Caption for Video S6. Prototyping of 3D printed Kresling cells via Polyjet technique. Dif-
ferent stages of fabrication and post-processing for multi-material 3D-printed Kresling cells using

a Stratasys J750 printer within the PolyJet framework.
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