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S.1 Materials and Methods

S.1.1 Initial sizing of Kresling cells

We determined an initial geometrical configuration of the Kresling cell that could potentially

exhibit bistability. The approach relied on a five-parameters model incorporating the elastic

deformation of stretchable mountain and valley creases [1, 2] with their rotational behavior [3].

As illustrated in Fig. S.1A, we first considered the following initial geometrical parameters:

an initial height denoted by ho, upper and lower polygons with n sides circumscribed within a

radius r, an initial relative angle θo between these polygons. The original lengths of the creases,

denoted by ao (side of the polygon), bo (peaks), and co (valleys), and their corresponding

dihedral angles δao, δbo, and δco, can be calculated using the expressions:
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When the compressive load F is applied to the top of the Kresling cell, it produces an axial

displacement u and a twisting rotation ϕ between the upper and lower polygons, while the

final height of the Kresling cell becomes h, as shown in Fig. S.1A. Furthermore, the length of

the crease corresponding to the side length of the polygon ao remains constant with negligible

deformation, as it remains circumscribed within the polygon’s circle of radius r. At this stage,
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it can be considered that a = ao, and the lengths of the creases corresponding to the peaks, b,

and valleys, c with their respective dihedral angles δa, δb, and δc are defined as follows:

b =

√
4r2 sin2

(
ϕ

2

)
+ (ho − u)2 (7)

c =

√√√√√√√√
4r2 sin2


ϕ +

2π
n

2

 + (ho − u)2 (8)

δa = arctan
ho − u

2r sin
(
ϕ

2

)
sin

(
ϕ

2
+
π

n

) (9)

δb = π − arccos
(ho − u)2 cos

(
ϕ +

2π
n

)
− r2

[
cos

(
ϕ +

π

n

)
− cos

(
π

n

)]2

(ho − u)2 + r2
[
cos

(
ϕ +

π

n

)
− cos

(
π

n

)]2 (10)

δc = π − arccos
(ho − u)2 cos (ϕ) − r2

[
cos

(
ϕ +

π

n

)
− cos

(
π

n

)]2

(ho − u)2 + r2
[
cos

(
ϕ +

π

n

)
− cos

(
π

n

)]2 (11)

During the compression process, the total elastic energy stored in the creases, denoted as

U, can be calculated as the sum of the deformation energy of the peaks and valleys, Ub,

and the contribution from the rotational springs of the creases, Us, as given by the following

expressions, which are defined by five parameters: b, c, δa, δb and δc.

Ub =
1
2

nKsb(b − bo)2 +
1
2

nKsc(c − co)2 (12)

Us =
1
2

nKa(δa − δao)2 +
1
2

nKb(δb − δbo)2 +
1
2

nKc(δc − δco)2 (13)

U = Ub + Us (14)

Here, Ksb and Ksc represent the stretching stiffness of the peaks and valleys, respectively,

while the rotational stiffness of the creases is represented by Ka for the side polygon, Kb for

the peaks, and Kc for the valleys. The total potential energy in the Kresling cell, Π(u) , can be

determined by the sum of the total elastic energy stored in the creases U, and the work done by
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the external force F that produces an axial displacement u:

Π(u) = U − Fu (15)

If we adhere to the principle of minimum total potential energy, we can identify an equilibrium

state [4]. Thus, we assume that:

δΠ/δu = 0 (16)

Then, we can define the applied axial force F, under the mentioned equilibrium conditions

and in terms of the total elastic energy stored energy in the creases, as follows:

F = δU/δu (17)

The previously mentioned equations enabled a preliminary evaluation of various geometrical

configurations to determine the initial sizing of a Kresling cell. The energy landscapes

calculated from Eq. 14, determined which initial geometrical parameters can be used to shape

Kresling cells prone to ensure a second local of energy minimum and satisfying the condition

δU/δu = 0, for further analyses. The geometrical configurations considered in this preliminary

assessment include: aspect ratios ho/r within the range of 0.4 to 2.25, polygons with a number of

sides equal to n=6 and initial rotational angles θo ranging from π/4n to 3π/n (7.5◦ ≤ θo ≤ 90◦).

The total elastic energy stored in the creases U, and axial displacement u, were normalized to

represent dimensionless quantities in the plots.

The stretching stiffness Ks is defined in terms of Young’s modulus E, and cross-sectional area

A as Ks = EA. By defining the stretching stiffness of the peaks and valleys per unit length,

we obtain Ksb = Ks/bo and Ksc = Ks/co, respectively. Similarly, the rotational stiffness K,

can be also expressed per unit length, with Kb = Kbo for the peaks and Kc = Kco for the

valleys. For this initial analysis, the contributions of both stiffness components to the total

elastic energy were introduced as three different ratios: K/Ks = 0, 0.5 × 10−4, 1.0 × 10−4. As a

result, two main scenarios were observed during the compression process of the Kresling cells:

Bistability (Bi) and Monostability (M), as illustrated in the plots of Fig. S.1B. When considering

a rotational stiffness K = 0, the results correspond to those obtained by the bar and truss model

defined by two parameters, (b,c).

Configurations with an initial rotational angle within the range 15◦ ≤ θo ≤ 60◦ and an

aspect ratio ho/r ≥ 1.5 exhibited an apparent bistability. Those Kresling cells showed
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Figure S.1: Initial sizing of the Kresling cell. (A) Kresling cell geometrical parameters during compression/expansion
process. (B) Initial assessment of monostable (M) and Bistable (Bi) configurations through a five-parameters model, by
considering their initial relative angle θo and aspect ratio ho/r and rotational versus stretching stiffness ratio K/Ks. (C)
Normalized Force (F) and Energy (U) plots versus normalized displacement u/r of the configuration θo = 30o and ho/r=1.75.

normalized energy landscapes with a second local of energy minimum (δU/δu = 0). In

addition, we observed that the majority of configurations with initial rotational angles lower

than θo = 40◦ and ho/r <1.5 tended to present a monostable behavior. While those with

higher values, θo > 60◦, allowed small rotational displacements limiting the folding process

and the panels tended to overlap prematurely. In contrast, Kresling cells with initial relative

angles θo < 7.5◦, were prone to buckle during the initial folding stages, displaying an almost

rigid behavior and higher energy values. Furthermore, Fig. S.1C presents the corresponding

normalized force and elastic energy landscapes obtained for the configuration: θo = π/6, and

ho/r=1.75. It exhibited a potential tendency towards bistability in all the evaluated scenarios
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(K/Ks = 0, 0.5 × 10−4, 1.0 × 10−4). Thus, we selected these geometrical parameters for the

initial sizing of the Kresling cells used in the subsequent analyses.

S.1.2 Parametric design of 3D Kresling cells

The 3D CAD parametric models were generated in Autodesk Inventor following the initial

geometrical configuration: polygons with n = 6 sides, initial relative angle θo = π/6, initial

height versus radius ratio ho/r=1.75, and panels thickness s ≈ 0.04ho. The parametric design

process is summarized in Fig. S.2. Firstly, the upper and lower polygons are defined in 2D

sketches and rotating with respect to each other in an angle equal to θo = 30◦. The panels

thickness s was defined through an offset to the polygons’ perimeter and the width limit of the

creases was determined by auxiliary circles with radius r′. Then, 3D sketches were constructed

to enable the 3D structure of the panels, and by using the command Boundary-surface their

profiles can be linked to form the surfaces of the panels. Next, the surfaces were merged with

the Patch command, and volumetric bodies were obtained to shape the panels and the creases.

As a result we obtained a 3D Kresling cell which represent the intact crease case.

The creases were designed with gradual reductions in their cross-sections, preserving a V

shape at the top and a variable circular shape at the bottom. A cutting radius sc = r′ · RF

is defined according to the imposed reduction factors from 0.25≤ RF ≤ 0.80, decreasing the

external thickness s and an internal thickness si is obtained. Afterwards, the 3D CAD model

were saved as *.step files for the Abaqus/CAE numerical simulations.
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Figure S.2: Parametric design process of a 3D Kresling cell. Creation of former 2D and 3D sketches in Autodesk Inventor.
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S.1.3 Numerical simulations considerations

The entire modeling process for simulating the kinematics of Kresling cells and generating

the load paths for the parametric study is schematized in Fig. S.3. The input 3D CAD files for

the Kresling cells models were saved as *.step files to be imported from Abaqus/CAE Standard

for their assembly. Traditionally, 3D printed Kresling cells have been designed and modeled as

linear elastic shells. This is particularly applicable to polymeric sheets with thicknesses less than

1 mm, while also considering the use of rigid or flexible materials. However, employing rubbery

creases, which are treated as nearly incompressible material, requires the use of hyperelastic

models with 3D hybrid modified formulation elements to achieve more realistic results.

In addition, complex and irregular 3D geometries such as Kresling inspired structures, require

the use of tetrahedron elements besides the application of free mesh with partition strategies.

Thus, intricate shapes can be accurately modeled while maintaining computational efficiency at

the same time. Given the hyperelastic nature of the flexible Polyjet photopolymers, the selected

mesh was composed by 10 node quadratic tetrahedron with hybrid modified constant pressure

elements C3D10MH. An adaptive mesh refinement study determined a suitable mesh density

that enables the achievement of convergence within a balanced computational time.

Four types of tetra-mesh from a coarse to refined number of elements were analyzed

comparing their obtained maximum force, that leads to the highest stress concentrations on the

Kresling cell, as well as the CPU time and refinement error (RE(%)), as described in Fig. S.4.

The latter was obtained by using the expression: 100 (FMi − FM4)/FM4, where FMi represents

the maximum force obtained in the numerical simulation with each mesh case i, FM4 is the

maximum force from the last attempt corresponding to the very refined mesh case M4. The

selected mesh corresponded to the case M3, which is formed by minimum three elements

assigned across the panels and creases cross-sections. This refined mesh fitted more accurately

to the Kresling cell geometry, reducing modeling errors and ensuring convergence.

Moreover, kinematic couplings were assigned between the reference points RP and the top

and bottom ring surfaces to effectively transmit the applied displacement, and the assigned

boundary conditions along the entire cylinder. The constitutive models used in the analyses

included an elasto-plastic model for the rigid photopolymers assigned to the panels, and a

visco-hyperelastic model for the flexible materials assigned to the creases. The material

characterization data necessary to define these constitutive models were obtained through

uniaxial tests, detailed in the following sections S.1.5 and S.1.6, and summarized in Tables 1
S8
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Figure S.3: Numerical simulations process in Abaqus/ CAE Standard. Mesh generation, boundary conditions (BC) and
example of obtained results in terms of Von Mises stress in MPa, VM, and vertical displacement, u, in mm. *RP2 represents the
reference point where the vertical displacement is applied, generating a restoring force FR considered for the load path plots.

and 2.

Furthermore, tie constraints were used to create a uniform contact among the panels, creases,

top and bottom ring surfaces. Fixed boundary conditions were applied at the bottom of

the cylinder, specifically at reference point RP1, to restrict displacements and rotations in

all directions. A vertical displacement, u, approximately equal to one third of the initial

height of the Kresling cells (≈ 1/3 ho), was imposed at the top in the respective reference

point RP2 and the corresponding applied Force was computed to determine the respective

force/displacement curves. This target displacement prevents further overlapping of the panels

during the compression of the Kresling cell.

The rotation at the top was released to simulate the natural twisting plus compression motion

of Kresling cells. A VISCO step was used to perform quasi-static analyses, incorporating

time-dependent material behavior without inertia effects. The geometric nonlinearity option

(NLGEOM) was activated to consider large deformations in the analysis. We first focus on the

initial relaxation region of the analyzed rubbery materials within a time defined as τ∗i , during

which most of the stress decay occurs, as shown in Fig.4B, to observe the viscosity effects

during bistability achievement. Then, the total simulation duration tt was estimated to lie within
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Figure S.4: Mesh refinement study parameters. Based on the maximum force achieved, Max(F), total number of elements,
including number of seeds along creases (crs) and panels (PAs), CPU time in seconds and refinement error percentage (RE(%)).

this initial relaxation region by using a velocity of 0.1 mm/s to reach the target displacement

u. The VISCO step was defined with a initial time size set to 0.01tt, while the maximum

and minimum increments were 0.1tt and 10−6, respectively. Thus, we can accurately capture the

viscosity effects and ensure the convergence by reducing the number of increments in the solver.

In addition, we performed simulations for each rubbery material over extended time periods to

predict whether bistability can also be achieved in both short- and long-term relaxation regions.

For instance, to determine the total simulation duration tt for the short-term relaxation region,

we considered a reference time τ equal to the highest τi term from the Prony series described in

Table 2. In this region, a lower stress decay in the relaxation curve of each rubbery material was

also observed. For long-term effects, when the material is fully relaxed and the stress relaxation

curve approaches a horizontal asymptote, we used total simulation durations tt of nτ, with n=6.

S.1.4 Design and Fabrication of samples for tensile tests

Polyjet photopolymers main groups can be classified into rigid thermoplastics, rubbers and

a hybrid types of composites, so called Digital Materials. The latter represent a combination

between glassy and flexible polymers, with various levels of shore hardness from A30 to A95.

In the present study, the selected rigid photopolymers were VeroYellow, VeroBlack and Digital

ABS. The tested rubbery Digital Materials were: AgilusClear 30 (Shore A30), FLXA-YT-S60

DM (Agilus30 + Vero Yellow, Shore A60), FLXA-9970 DM (Agilus30 + VeroClear, Shore

A70), FLXA-9985 DM (Agilus30 + VeroClear, Shore A85) and FLXA-YT-S95 DM (Agilus30

+ VeroYellow, Shore A95). In this study they are referred with the acronyms AG30, DM60,

DM70, DM85 and DM95, respectively.

All the samples were fabricated using a 3D printer Stratasys J750 with a layer resolution of

approximately 27 microns in High-Mix mode. The support material was first smoothed in a

soapy water solution bath for one hour and then, it was removed using water jetting.
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Figure S.5: Specimens made of photopolymers for uniaxial tests. (A) Fabrication via Polyjet technique with orientations
along the X,Y,Z axis of the build tray. (B) Experimental setup for uniaxial tests.

For the uniaxial tensile tests, dog-bone-shaped samples were designed following the ASTM

D638 standard for rigid polymers, and the ASTM D412 standard for rubbers. Five samples

were fabricated for each material type. They were printed in three directions: longitudinal (X),

transversal (Y) and perpendicular (Z) to the build tray, as shown in Fig. S.5A. For the stress

relaxation tensile tests conducted on the rubbery material, dog-bone sample design adhered

to the ISO 6914, ASTM E328, and ASTM D412 standards. Three samples were printed

longitudinally oriented to the build tray for each type of Digital Material.

S.1.5 Uniaxial tensile tests and constitutive models

The uniaxial tests were carried with a MIDI 10 testing machine by imposing a cross-head

velocity of 0.1 mm/sec, as shown in Fig. S.5B. The tests stopped when fracture occurred in

the sample. During the test both applied displacement and load were recorded. In particular,

two types of load cells with different capacities were used to measure the applied tensile load

during the experiments: 100 kN for rigid polymers, and 10 kN for rubbery materials. The data

rate acquisition was equal to 1 sample/sec. The constitutive models employed in the numerical

simulations, were obtained based on experimental data from the previously mentioned uniaxial

tests. The average among the different printing orientations, in X,Y and Z, was considered for

the mechanical properties estimation. In the case of rigid photopolymers, such as VeroBlack

(VB), an elasto-plastic model was selected. The average stress-strain curves and Young’s

modulus are shown in Fig. S.6A and B, respectively. The Young’s Modulus was estimated
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from the slope of the σ − ε curves within the elastic range. The latter is determined by fitting a

straight trendline to the experimental curve, which extends from the beginning of the curve to

the point where the R2 values approach closest to 1. The elasto-plastic behavior was modeled

in Abaqus/CAE standard, considering the experimental (σ − ε) curves by using the material

calibration utility.

First, the nominal (σ − ε) curves inputs get converted into true strains (εt) and true stresses

(σt) with the expressions: εt = ln(1 + ε) and σt = σ(1 + ε). The Young’s modulus is calculated

as previously explained and used as an input datum. Thus, the yield point can be identified and

the plastic strains, εPL, and stresses, σPL, are finally estimated to characterize the elasto-plastic

model: (ε = εEL + εPL). Moreover, we evaluated the loss of mechanical properties over time

of rigid photopolymers from the Vero group, such as VeroBlack (VB). Similarly, samples were

fabricated and tested one day, one and six months after, following the mentioned uniaxial test

procedure.
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Figure S.6: VeroBlack experimental data. (A) Average Stress-Strain (σ − ε) plots. (B) Average Young’s modulus E +/-
standard deviation obtained per each group of samples with a printing orientation in X, Y, and Z axis, and overall average (VB
Avg*). Loss of mechanical properties, including: (C) Young’s modulus, E, and (D) Ultimate tensile strength, σu, due to aging
effects analyzed using data obtained from tests conducted after 1 (E=100%), 30, and 180 days of sample fabrication.
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Rubbery materials are mostly defined by strain energy potential functions due to their

hyperelastic behavior. Their mechanical characterization requires a further step to find a model

that fits the nominal curves (σ − ε) with the tensile tests of the Digital materials group: AG30,

DM60, DM70, DM85 and DM95. Considering that the experimental data was obtained from

uniaxial tests, the material constants Ci j from linear hyperelastic polynomial models were

fitted to the nominal stresses. Thus, they were calculated through a least-squares method in

Abaqus/CAE material model calibration tool [5]. Then, the relative error (RE) of the stress

measure is minimized and it is defined by the expression:

RE =
n∑

i=1

(
1 −

σth
i

σ
exp
i

)2

, (18)

where σexp
i represents the experimental stress measures and σth

i is the nominal stress. In this

case, the latter is determined by the tensile uniaxial stress T1, which is derived from the strain

energy potential U and the stretch in the loading direction λ1, as follows:

T1 = 2(1 − λ−3
1 )

(
λ1
∂U

∂I1

+
∂U

∂I2

)
(19)

Thereby, a Neo-Hookean model fitted the nominal stresses of the tested digital materials group

from AG30, DM60 to DM95 as Fig. S.7A depicts. The fitting was obtained with relative

errors between the range 5% ≤ RE ≤ 10%. Moreover, this strain energy function is described

in Invariant base form as: UN = C10(I1 − 3), and its equivalent stretch base is written as:

UN =
µ10

2
(λ2

1 + λ
2
2 + λ

−2
1 .λ

−2
2 − 3), (20)

Additional mechanical properties, including average elongation at break (εb), were determined

from the experimental curves (σ − ε), as shown in Fig. S.7B. Other hyperelastic models, such

as Mooney-Rivlin and Polynomial N=1, showed higher relative error values ranging from

10%≤ RE ≤ 32%, and they also presented unstable strains during the calibration process.
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Figure S.7: Rubbery Digital materials (DM) experimental data. (A) Average stress-strain curves obtained during the
uniaxial tests (Exp) and hyperelastic models fitting with Neo-Hookean (NH-Fit) strain energy potential. (B) Average Elongation
at break, εb, +/- standard deviation. (*) Average obtained per each group of samples with a printing orientation in X and Y axis.

S.1.6 Stress Relaxation tests and Viscoelastic parameters

Rubbery materials present high sensitivity to strain rates and time-dependent behavior, which

can be further characterized by a visco-hyperelastic model. The time dependent constitutive

equations that define linear viscoelastic materials, are based on the stress and strain history,

loading-displacement rate and loading application time. Polyjet elastomers usually exhibit a

significant relaxation of their peak stresses in a short time span, some of them reaching it in 20

seconds [6].

The most common viscoelastic models are based on the combination in series or in parallel of

linear elastic (springs) and viscous components (dashpots). Then, the viscoelastic components

can be determined by conducting a stress relaxation test and therefrom, obtaining the subsequent

Prony parameters. The load and time data considered for determining the viscoelastic properties

are recorded once the imposed strain value ε0 is reached. The initial part of loading phase,

where the strain is rapidly increasing, is usually disregarded. After this initial phase, a time

t=0 is established as the starting point for analysis under a constant strain ε0, together with an

initial stress σ0 and the corresponding elastic instantaneous modulus Eo. Therefore, the time

dependent stress σ(t) is defined by:

σ(t) = E(t)εo (21)

Considering that the material behaves as a Maxwell solid, the time dependent relaxation

modulus Et can be expressed in terms of a Prony series expansion and calculated from Eo [7],
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as shown below:

E(t) = Eo

1 − N∑
i=1

Ei(1 − e−t/τi)

 (22)

where Ei corresponds to the ”i-th” Prony coefficient, N represents the total number of terms

of the Prony series, and τi is the relaxation time constant. Thereby, the Tensile relaxation

modulus E(t), can be determined by E(t) = σ(t)/ε0. Then, the Shear relaxation modulus G(t),

can be obtained by the expression: G(t) = E(t)/ [2(1 + ν)] and the corresponding values per

each analyzed rubbery photopolymer are illustrated in Fig. S.8A. Furthermore, the tensile

instantaneous relaxation modulus Eo, corresponding to the time t=0, is defined by Eo = σ0/ε0.

Similarly, the shear instantaneous relaxation modulus Go, is calculated by Go = Eo/[2(1 + ν)].

The Poisson’s ratio ν of elastomeric photopolymers and composites with shore hardness

between DM60 and DM95, can vary from 0.48 to 0.46, and 0.49 for the rubbery AG30 [8].

The rate-independent behavior of the material can be defined as hyperelastic under large

strains in Abaqus/CAE solvers and being described by the instantaneous relaxation tensile

modulus. After, we estimated a normalized shear relaxation modulus from the experimental

curve (G(t) − t) employing the expression: Gn = G(t)/G0. Thus, Eq. 22 can be re-written in

terms of the normalized shear relaxation modulus Gn(t), and the dimensionless Prony constants

gi, as follows:

Gn(t) = 1 −
N∑

i=1

gi(1 − e−t/τi) (23)

In addition, the long-term shear relaxation modulus G∞ is defined by the shear instantaneous

relaxation modulus Go and the dimensionless Prony constants gi, as given by Eq. 22:

G∞ = Go

1 − N∑
i=1

gi

 (24)

Assuming a linear viscosity and nearly incompressibility of the material, given that the

Poisson’s ratio of the studied rubbery materials ranges within 0.46 and 0.49, the long-term

tensile relaxation modulus can be estimated as: E∞ = G∞[2(1 + ν)].

The viscoelastic material properties, defined by the dimensionless Prony series parameters,

can be determined by fitting them to experimental relaxation test data. For this reason, a series

of stress relaxation tests in tension were performed by adapting the ISO 6914 and ASTM E328

standards. Three different constant strain values, ε0 = 10%, ε0 = 15%, and ε0 = 25%, were

imposed on each rubbery sample.
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The stress relaxation tests for rubbery materials were conducted with a MIDI 10 testing

machine by imposing a cross-head velocity of 0.1 mm/sec and at controlled room temperature

(23 ◦C). A 10 kN load cell measured the applied tensile load. When the displacement

corresponding to the target strain was reached, the machine stopped and the load relaxation

was monitored. At this point, an initial time t = 0 is established in the force-time curve (F − t),

along with its corresponding peak force Fo and a constant strain εo. The tests were considered

concluded when the force-time curve (F − t) approached an almost horizontal asymptotic line.

Subsequently, the stress depending on time σ(t) was calculated by dividing the force F(t) by

the cross-sectional area of the sample Ao. This conversion transformed the force-time (F − t)

curve into a stress-time (σ−t) curve, which begins at the peak stressσo. Next, the average (σ−t)

curves for each group of samples subjected to constant strain values, ε0 = 10%, ε0 = 15%,

and ε0 = 25%, were obtained. Since the Kresling creases are designed to overcome large

deformations, and ISO 6914 standards recommend the use of high strain values, we selected

the maximum strain value (εo=25%) for estimating the Relaxation modulus and the Prony

series parameters. The difference between the G(t) and Gn(t) curves obtained from the average

values and the selected maximum strain (εo=25%) was not significant. We then applied these

obtained Prony coefficients to the constants within the strain energy function UN(t) in order to

introduce the rate-dependent behavior associated with viscosity. Consequently, in the case of a

Neo-Hookean material model defined by an instantaneous constant Co
10, the visco-hyperelastic

relaxation function can be expressed as follows:

UN(t) = Co
10

1 − N∑
i=1

gi(1 − e−t/τi)

 (25)

These parameters are then incorporated into a visco-hyperelastic constitutive model described

by Eq. 25 for subsequent numerical simulations in Abaqus/CAE. Then, we fitted the

obtained Prony parameters to the experimental data (Gn − t) using a damped least squared

method (DLS). It was implemented using a Matlab optimization toolbox script based on the

Levenberg–Marquardt algorithm. As a result, the selected fitting coefficients correspond to the

lowest goodness of fit values, as shown in Fig. S.8B. The latter is obtained from the norm of

residuals, denoted as ∥e∥ and calculated as follows:

∥e∥ =

√√
n∑

i=1

e2
i , (26)
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where the residuals ei represent the sum of the differences between the observed yi and predicted

values f (xi), being defined as: ei = yi − f (xi).
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Figure S.8: Stress relaxation tests of the Rubbery Digital Materials AG30 to DM95. (A) Relaxation function G(t) with the
corresponding Instantaneous modulus Go. Units: MPa. (B) Experimental and fitted data of the Normalized shear relaxation
modulus Gn(t), in logarithmic scale with their respective goodness of fit in terms of the norm of residuals ∥e∥, where: AG30 ∥e∥ =
3.9 × 10−4, DM60 ∥e∥ = 4.0 × 10−4, DM70 ∥e∥ = 5.8 × 10−4, DM85 ∥e∥ = 3.1 × 10−3, DM95 ∥e∥ = 2.5 × 10−3.

Material E (MPa) σy (MPa) εb (%) σu (MPa)
VeroBlack 1543.58 19.79 15.75 44.89
UTL Resin (BMF) 567.00 10.00 40.80 14.10
Origin 402 42.00 - 230 5.5
IP-PDMS 15.30 - 240 -

Table 1: Elastic and Elasto-plastic materials mechanical properties.

AG30 DM60 DM70 DM85 DM95
C10 = 0.111 C10 = 0.157 C10 = 0.163 C10 = 0.237 C10 = 0.457
Eo = 0.545 Eo = 0.782 Eo = 1.398 Eo = 3.200 Eo = 6.621
E∞ = 0.459 E∞ = 0.651 E∞ = 0.938 E∞ = 1.676 E∞ = 2.498
Go = 0.183 Go = 0.268 Go = 0.479 Go = 1.095 Go = 2.267
G∞ = 0.154 G∞ = 0.220 G∞ = 0.317 G∞ = 0.570 G∞ = 0.855

gi τi gi τi gi τi gi τi gi τi

0.030 7.612 0.035 10.350 0.060 10.717 0.071 10.787 0.143 11.435
0.052 64.359 0.055 98.390 0.099 93.980 0.132 78.847 0.189 93.977
0.045 333.610 0.048 547.863 0.090 498.890 0.131 404.112 0.154 520.646
0.030 2310.2422 0.041 4151.017 0.089 3632.445 0.146 3116.457 0.137 3697.450

Table 2: Flexible materials mechanical properties and Prony series parameters. *Eo, E∞, Go, G∞ units in MPa
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S.1.7 Fabrication protocol via Polyjet 3D printing technique

The 3D printed Kresling unit cell fabrication process contemplates three main stages:

Design, 3D printing and Post-processing. During the design stage, the 3D CAD parametric

models were generated in Autodesk Inventor. The selected geometrical configuration for

the experimental validation of the Kresling cells is: C8 case, polygons with n = 6 sides,

θo = π/6, ho/r=1.75, t ≈ 0.04ho, creases width/thickness ratio w/s =1.50 and RF ≤ 0.66.

The Kresling cell dimensions ho=17.5 mm and r=10 mm, were scaled three times in order to

make feasible their printing and to avoid the dimensional limitations regarding manufacturing.

The other geometrical parameters and ratios were maintained to keep the proportions of

the analyzed Kresling cells. The parametric design process was previously summarized in

Fig. S.22, section S.1.2. The 3D CAD model were saved as Parasolid files (∗.xb) to facilitate

the exportation of the assembled components in a unique file for 3D printing. At the same time,

it enables to identify separately the different components of the Kresling cells, such as panels,

peaks, valleys and rings, for the assignation of different materials.

For the printing process, the GrabCAD software was used for the preparation of the printing

files to be send to a Stratasys J750 printer series, including automatic slicing. Once the files

are imported, the respective dimensions and position along the build tray are controlled. Since

the panels were conceived to be made of rigid materials, the VeroBlack photopolymers was

selected. In the case of the creases, the following flexible materials were employed in different

Kresling cells: AG30, DM60, DM70, DM85 and DM95. The selected support material was

SUP706B with the standard grid density mode. It is important to remark that supports were

also assigned to the panels during the printing process, because of the presence of inclined

faces with respect to the build tray. The printing setting was the following: High-Mix mode

with a layer resolution thickness of 27 microns and matte surface finishing.

The post-processing operations include mostly the supports removal, which demands to be

meticulously carried on specially considering the small dimensions of the Kresling cells creases

being at the edge of Polyjet manufacturing limitation ≤ 1.0 mm. The prolonged contact with

water or alkaline solutions of small elements and multi-material interfaces lower than 1.0 mm

cross-section, lead to a premature breakage and detachment. For this reason, the exposure of

the 3D multi-material sample to humidity should be controlled. As an alternative, the support

residues were carefully removed mostly by hand and briefly rinsed in water for less than five

minutes.
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Figure S.9: Fabrication of multi-material Kresling cells. (A) Polyjet printing process and multi-material deposition of rigid
(VB), flexible (DM60) and support grid (SUP706B). (B) Support material distribution along the samples with matte surface
finishing. (C) 3D printed Kresling cell from case C8 (RF=0.80) used in the experiments, with the following dimensions: r=30,
hR=3, ho=52.50, and thickness of the panels s=2.25. Units: mm. Scale bar: 10 mm.

S.1.8 Experimental setup

A further experimental validation was carried on to involve quasi-static tests on the 3D

printed Kresling cells to validate the numerical simulations results. A compression load was

applied at the top of the Kresling cell with a Messphysik µ-strain loading frame machine (from

ZwickRoell, 0.01 µm stroke measurement resolution). The experiments were performed at a

testing speed of 0.1 mm/sec. The applied Load F and displacement u were measured with a AEP

TYPE F1-1kN load cell and with a displacement transducer mounted internally to the testing

machine, respectively. The tests were stopped once a displacement u = 1/3ho was applied the

sample. The experimental setups, shown in Fig. S.10, consists of two fixtures. The top fixture

guarantees free rotation, ϕ, during the folding of the Kresling (allowing the natural twist under

compression inherent to Kresling patterns kinematics), while the bottom fixture prevent both

displacements and rotations [3].

The free rotational fixture is formed by a rotating plate coupled to a ball bearing (SKF 608

SKF 8x22x7) and a rotational fastener. The Kresling cell samples are directly linked to the

top and bottom plates through two different systems. The first one consisted in a female-male

connection system used for the Kresling cells with thicker creases, as shown in Fig. S.10A. Pins

were created on the surfaces of the samples rings and distributed to coincide with the vertices

of the hexagonal polygons. These pins were then inserted into the corresponding holes located

in the plates. However, in this system, when using Kresling cells with thinner creases, the

samples tended to slide. To prevent this problem, we implemented a second connection system
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based on magnets applied to the top and bottom of the samples and the plates, as described in

Fig. S.10B. The components of the first setup were 3D printed using the PolyJet technique on

a Stratasys J750 3D printer, with tolerances of ±0.2 mm for holes and insertions. In contrast,

the second setup was printed using the DLP technique through an Origin-One printer, with

tolerances between ±0.1-0.25 mm for the magnet holes and insertions.

Free rotating plate

Ball bearing

Rotating fastener

Kresling unit cell

Fixed support plate

Pin

Coupling-hole

(A) (B)F

u

φ 

Free rotating plate

Ball bearing

Rotating fastener

Kresling unit cell

Fixed support plate

F

u

φ 

Magnet

Magnet

Insertion hole

Figure S.10: Experimental setup for compression test with an applied Load F and displacement u. Exploded schemes of
the experimental setups with a fixture at the top, enabling a free rotation ϕ, and a fixed support fixture at the bottom with the
following connection systems: (A) Pins and (B) Magnets.

S.1.9 Hands-on experimental validation of Bistability

A manual compressive force was applied to the top of the Kresling cells, allowing free

rotation at the top while constraining all displacements and rotations at the bottom. This action

enabled us to recreate their spontaneous rotation, reflecting the characteristic kinematics during

compression. Thus, we conducted a hands-on validation of bistability to determine which

Kresling cells remained in the folded configuration after the manual force was applied. The

applied compressive force generated an axial displacement u of approximately one third of the

initial height ho of the Kresling cell.
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For example, we compared the behavior of Kresling cells with creases made of the rubbery

material DM60 generated with gradual reductions (C8 RF=0.80) versus its corresponding intact

creases cell, as shown in Fig. S.11A. We also observed the effects of viscosity in Kresling

cells (C8 RF=0.80) with creases made of different rubbery photo-polymers AG30, DM60,

DM70, DM85 and DM95, as illustrated in Fig. S.11B. In these hands-on experiments, we

confirmed that all Kresling cells with creases generated with RF=0.80 remained in the folded

configuration for over 180 seconds after the application of the manual compressive force,

thus validating the achieved bistability in the experiments conducted with the testing machine.

Conversely, the Kresling cells with creases made of the highly viscous DM95 or the intact cell

immediately returned to their original configuration, exhibiting a monostable behavior. The

complete hands-on experimental validation is further described in videos S2 and S4.

Figure S.11: Hands-on experimental investigation demonstrating the achievement of bistability (Bi) in 3D-printed
multi-material Kresling cells of Case 8, by comparing their folding process. (A) RF=0.80 versus Intact creases cell (Int).
(B) Different RF=0.80 cells with creases made of rubbery photopolymers: AG30, DM60, DM70, DM85, and DM95. *Note:
The Kresling cells were fabricated with an initial height ho=52.5 mm, and rigid panels made of VB. The applied force aimed
to achieve an axial displacement u≈1/3ho.

S.1.10 Microscopic characterization of 3D printed creases results

The dimensional accuracy of the printing process affects the real dimensions of the 3D

printed Kresling cells. The measurements of the peaks and valleys creases from the case

C8, with gradual reductions between 0.25 ≤ RF ≤ 0.80, were analyzed. We established a

comparison between those obtained in reality after the Polyjet process and the corresponding

exact measurements in the CAD models. A transversal section passing through the half of the

Kresling cell was considered to design the sample for the characterization of the geometry of
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both types of creases, peaks and valleys. This sample replicates the intermediate substrates of

the 3D printed Kresling cell.

The real dimensions of 3D printed samples were determined via a stereo microscope (Nikon

SMZ800) equipped with an ED Plan 1.5x lens and with a DS-Ri2 camera. The mean values and

the corresponding standard deviations (SD) were obtained from three real measurements (n=3)

of the geometrical parameters characterizing the creases, as illustrated in Fig. S.12 and Fig. S.13

for both creases, peaks and valleys. We determined the corresponding mean percentage error,

MPE (%) between the dimensions from printed samples (Real) and those used from the CAD

models, as follows:

MPE(%) =
100

n

n∑
n=1

(
MCAD − MReal

MReal

)
(27)

The obtained real and exact measurements of the analyzed creases, with the respective

MPE (%) error are described in Fig. S.14, in Fig. S.15, Fig. S.16 and Fig. S.17, including

peaks and valleys. The measurements taken along the multi-material interface between the

rigid and the rubbery photopolymer show differences with an error between 2 ≤ MPE (%) ≤ 8.

The transition zone where the two materials are merging is not homogeneous. For this reason,

the dimensions along the edges of the 3D printed creases were not easily measured, potentially

leading to an error. Since the internal thickness si is a crucial parameter for generating gradual

reductions along the creases, we have selected this control parameter to evaluate the impact

of differences between the exact and real measurements on the resulting experimental load

paths and compare them to the numerical results. Subsequently, an updated CAD model of

Kresling cells may be created by adjusting the internal thickness si according to the mean real

measurements of the analyzed 3D printed creases.

Furthermore, we also observed that when the exact dimensions were designed less than

1.20 mm, the obtained real dimensions in the 3D printing process led to greater values

exhibiting a negative error between -1 ≤ MPE (%) ≤ -25. Specifically, in the cases related to

creases with smaller internal thickness si generated with the reduction factors ranging within

0.57 ≤ RF ≤ 0.80. In contrast, a positive error within 3 ≤ MPE (%) ≤ 10, is achieved when the

exact dimensions from the CAD files are above 1.20 mm, such as the cases with reduction

factors between 0.25 ≤ RF ≤ 0.50. It means that the resulting creases exhibited smaller real

dimensions. This fact can be attributed to the printing limitation of fabricating defective

load bearing elements with cross-sections around 1 mm, besides the characteristic dimensional

accuracy of Polyjet J750 printers. In the case of printing with High-Mix mode, where the layer
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height reaches 13-16 microns, the exhibited dimensional accuracy ranges within ±0.06-0.1% for

part lengths under ≈100 mm [9], even grasping values around ±0.10 mm in real applications.

Figure S.12: Microscope characterization of 3D printed creases. (A) Intermediate transversal section of the 3D printed
Kresling cells from case C8 with gradual reduction factors ranging between 0.57 ≤ RF ≤ 0.80 (scale 3:1). Comparison between
the real (3DP) and the exact (CAD) measurements of the corresponding: (B) Peaks and (C) Valleys. Units: microns. Scale
bar:1 mm.
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Figure S.13: Microscope characterization of 3D printed creases. (A) Intermediate transversal section of the 3D printed
Kresling cells from case C8 with gradual reduction factors ranging between 0.25 ≤ RF ≤ 0.50 (scale 3:1). Comparison between
the real (3DP) and the exact (CAD) measurements of the corresponding: (B) Peaks and (C) Valleys. Units: microns. Scale
bar:1 mm.
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Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

REAL 1 1805.42 1977.77 786.63 2336.39 2323.52 1842.47 1701.28 3843.36 421.35 487.45
2 2049.90 2123.95 743.41 2567.10 2559.89 1840.53 1753.66 3947.92 335.62 347.94
3 1797.31 1897.40 734.76 2350.34 2249.66 1856.68 1751.66 3913.40 549.37 538.36

Mean 1884.21 1999.71 754.93 2417.94 2377.69 1846.56 1735.53 3901.56 435.45 457.92
SD 143.55 114.86 27.79 129.36 162.05 8.82 29.68 53.28 107.57 98.59

CAD 1 2173.78 2173.14 710.08 2512.84 2508.53 1815.27 1732.96 3773.05 368.96 373.54
MPE (%) 13.32 7.98 -6.32 3.78 5.22 -1.72 -0.15 -3.41 -18.02 -22.59

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

REAL 1 2095.18 1666.30 639.68 1868.19 1894.55 1851.63 1900.95 3814.28 792.53 656.45
2 2079.31 1987.27 639.68 1893.64 1732.67 1909.83 1733.86 3800.96 727.67 638.99
3 2393.20 2258.65 553.23 1876.31 1821.23 1861.73 1793.39 3626.94 986.39 889.77

Mean 2189.23 1970.74 610.86 1879.38 1816.15 1874.40 1809.40 3747.39 835.53 728.40
SD 176.82 296.52 49.91 13.00 81.06 31.10 84.69 104.53 134.61 140.02

CAD 1 2453.70 2455.58 577.80 1857.34 1869.41 1815.27 1732.61 3653.10 844.40 824.90
MPE (%) 10.78 19.74 -5.72 -1.19 2.85 -3.26 -4.43 -2.58 1.05 11.70

REAL 1 2044.80 1999.25 829.85 2481.65 2331.27 1913.83 1727.26 3460.71 448.72 518.83
2 1956.78 1980.91 829.85 2453.26 2460.88 1864.04 1748.99 3423.04 610.22 702.65
3 1843.65 1930.68 899.85 2406.09 2390.02 1827.35 1756.54 3427.05 609.43 707.45

Mean 1948.41 1970.28 853.18 2447.00 2394.06 1868.41 1744.26 3436.93 556.12 642.98
SD 100.84 35.50 40.41 38.17 64.90 43.41 15.20 20.69 93.01 107.54

CAD 1 2173.78 2173.14 843.42 2512.84 2508.53 1815.27 1732.96 3494.55 502.29 506.87
MPE (%) 10.37 9.33 -1.16 2.62 4.56 -2.93 -0.65 1.65 -10.72 -26.85

REAL 1 2064.31 2149.35 899.01 1870.29 1712.57 1885.14 1682.04 3703.44 877.00 801.23
2 2457.63 2458.85 622.39 1894.36 1911.09 1839.71 1799.86 3562.02 872.50 885.46
3 2277.95 2257.50 855.78 1962.17 1809.93 1856.07 1739.69 3725.26 899.96 807.23

Mean 2266.63 2288.57 792.39 1908.94 1811.20 1860.31 1740.53 3663.57 883.15 831.31
SD 196.90 157.07 148.81 47.64 99.27 23.01 58.91 88.62 14.73 46.99

CAD 1 2453.70 2455.58 674.91 1857.34 1869.41 1815.27 1732.61 3652.71 958.31 940.19
MPE (%) 7.62 6.80 -17.41 -2.78 3.11 -2.48 -0.46 -0.30 7.84 11.58

Geometrical Parameters RF=0.80
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.74
Peaks measurements

Valleys measurements

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S.14: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.74 ≤ RF ≤ 0.80.
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error MPE(%) with respect to
the exact (CAD) measurements. Units: microns.
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REAL 1 1925.05 1952.67 1089.18 2355.76 2441.13 1882.14 1701.58 3306.21 592.87 661.01
2 1762.63 1897.89 1097.82 2367.57 2346.68 1840.89 1818.57 3144.04 656.89 707.30
3 2076.20 2037.56 976.80 2358.92 2403.50 1846.38 1773.73 2918.37 746.48 754.29

Mean 1921.29 1962.71 1054.60 2360.75 2397.10 1856.47 1764.63 3122.87 665.41 707.53
SD 156.82 70.37 67.52 6.11 47.55 22.40 59.02 194.78 77.16 46.64

CAD 1 2173.78 2173.14 843.42 2512.84 2508.53 1815.27 1732.96 3494.55 502.29 506.87
MPE (%) 11.61 9.68 -25.04 6.05 4.44 -2.27 -1.83 10.64 -32.48 -39.59

REAL 1 2276.31 2216.95 812.56 1870.04 1810.70 1858.39 1766.07 3234.99 987.65 735.99
2 2200.04 2255.46 924.94 1816.62 1842.53 1738.40 1790.08 3205.89 914.09 880.13
3 2299.29 2135.98 726.12 1771.06 1696.32 1777.74 1736.65 3083.61 1163.36 1060.41

Mean 2258.55 2202.80 821.21 1819.24 1783.18 1791.51 1764.27 3174.83 1021.70 892.18
SD 51.95 60.98 99.69 49.54 76.89 61.17 26.76 80.33 128.08 162.55

CAD 1 2453.70 2455.58 791.14 1857.33 1869.41 1815.27 1732.61 3044.68 1100.72 1084.35
MPE (%) 7.95 10.29 -3.80 2.05 4.61 1.31 -1.83 -4.27 7.18 17.72

REAL 1 1843.58 1878.57 1262.07 2383.19 2311.19 1788.05 1730.54 2845.25 843.64 920.16
2 1951.89 2039.94 1244.78 2474.39 2412.00 1804.26 1770.34 2813.76 815.30 898.31
3 2072.20 2191.38 1236.13 2409.32 2481.15 1818.14 1762.74 2531.63 910.13 947.11

Mean 1955.89 2036.63 1247.66 2422.30 2401.45 1803.48 1754.54 2730.21 856.36 921.86
SD 114.36 156.43 13.21 46.97 85.47 15.06 21.13 172.70 48.68 24.44

CAD 1 2173.78 2173.14 1224.37 2512.84 2508.53 1815.27 1732.96 2697.78 883.24 887.84
MPE (%) 10.02 6.28 -1.90 3.60 4.27 0.65 -1.25 -1.20 3.04 -3.83

REAL 1 2430.01 2413.36 847.14 1888.91 1806.66 1823.66 1801.08 2723.95 1423.84 1265.66
2 2266.27 2237.62 847.14 1888.21 1807.67 1846.33 1794.40 2855.89 1149.21 1090.58
3 2438.34 2431.34 838.50 1886.06 1764.47 1839.21 1766.05 2811.48 1354.00 1246.38

Mean 2378.21 2360.77 844.26 1887.73 1792.93 1836.40 1787.18 2797.11 1309.02 1200.87
SD 97.03 107.03 4.99 1.49 24.66 11.59 18.60 67.13 142.73 96.00

CAD 1 2453.70 2455.58 946.48 1857.34 1869.41 1815.27 1732.61 2609.96 1283.88 1269.77
MPE (%) 3.08 3.86 10.80 -1.64 4.09 -1.16 -3.15 -7.17 -1.96 5.43

Geometrical Parameters RF=0.57
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.66
Peaks measurements

Valleys measurements

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S.15: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.57 ≤ RF ≤ 0.66.
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error MPE(%) with respect to
the exact (CAD) measurements. Units: microns.
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REAL 1 1938.23 1904.66 1296.64 2318.11 2340.35 1784.59 1781.64 2361.64 987.28 1017.38
2 1975.79 2093.31 1297.49 2412.80 2448.53 1837.37 1773.89 2472.90 978.77 1082.89
3 2038.33 2035.59 1327.49 2436.15 2402.00 1904.94 1810.34 2531.46 942.40 1078.77

Mean 1984.12 2011.19 1307.21 2389.02 2396.96 1842.30 1788.62 2455.33 969.48 1059.68
SD 50.57 96.66 17.57 62.51 54.27 60.33 19.20 86.26 23.84 36.69

CAD 1 2173.78 2173.14 1434.00 2512.84 2508.53 1815.27 1732.95 2361.35 1043.96 1048.55
MPE (%) 8.72 7.45 8.84 4.93 4.45 -1.49 -3.21 -3.98 7.13 -1.06

REAL 1 2322.80 2075.29 985.45 1767.51 1769.52 1807.56 1783.69 2401.85 1563.69 1661.65
2 2324.10 2312.17 1100.89 1826.11 1806.05 1837.07 1812.26 2260.21 1538.72 1469.46
3 2152.60 2078.57 950.87 1866.78 1746.68 1827.55 1724.35 2407.22 1193.45 1197.10

Mean 2266.50 2155.34 1012.40 1820.13 1774.08 1824.06 1773.43 2356.43 1431.95 1442.74
SD 98.64 135.83 78.56 49.90 29.95 15.06 44.84 83.37 206.93 233.43

CAD 1 2453.70 2455.58 1058.19 1857.34 1869.41 1815.27 1732.61 2283.87 1421.29 1408.90
MPE (%) 7.63 12.23 4.33 2.00 5.10 -0.48 -2.36 -3.18 -0.75 -2.40

REAL 1 1825.07 1936.91 1547.33 2324.26 2263.44 1799.77 1714.02 2053.97 1205.87 1207.09
2 2018.29 2079.35 1538.68 2382.63 2377.57 1818.97 1730.74 2040.43 1236.40 1260.02
3 1992.82 1978.89 1555.97 2281.62 2336.26 1842.91 1790.18 1869.76 1337.59 1353.99

Mean 1945.39 1998.38 1547.33 2329.50 2325.76 1820.55 1744.98 1988.05 1259.95 1273.70
SD 104.98 73.19 8.65 50.71 57.79 21.61 40.03 102.67 68.95 74.40

CAD 1 2173.78 2173.14 1610.08 2512.84 2508.53 1815.27 1732.96 1889.97 1268.96 1273.56
MPE (%) 10.51 8.04 3.90 7.30 7.29 -0.29 -0.69 -5.19 0.71 -0.01

REAL 1 2408.36 2429.37 1296.64 1822.79 1793.45 1820.92 1740.57 2044.27 1532.16 1569.42
2 2276.83 2280.70 1262.07 1798.03 1792.89 1799.84 1740.85 1797.87 1433.65 1416.88
3 2267.32 2228.39 1322.58 1807.67 1799.34 1788.70 1746.69 1589.70 1479.77 1414.80

Mean 2317.50 2312.82 1293.76 1809.50 1795.23 1803.15 1742.70 1810.61 1481.86 1467.03
SD 78.83 104.27 30.36 12.48 3.57 16.36 3.46 227.55 49.29 88.68

CAD 1 2453.70 2455.58 1214.91 1857.34 1869.41 1815.27 1732.61 1827.24 1613.72 1603.74
MPE (%) 5.55 5.81 -6.49 2.58 3.97 0.67 -0.58 0.91 8.17 8.52

Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.40
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.50

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S.16: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.40 ≤ RF ≤0.50.
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error MPE(%) with respect to
the exact (CAD) measurements. Units: microns.
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REAL 1 2007.90 2155.04 1590.55 2333.07 2430.29 1859.66 1726.92 1846.22 1322.36 1490.03
2 2028.15 2180.96 1694.28 2323.11 2403.11 1828.61 1707.10 1693.91 1380.78 1442.26
3 2092.83 2118.11 1633.77 2312.08 2334.74 1848.64 1697.99 1580.72 1468.83 1542.94

Mean 2042.96 2151.37 1639.53 2322.75 2389.38 1845.64 1710.67 1706.95 1390.66 1491.74
SD 44.36 31.59 52.10 10.50 49.23 15.74 14.79 133.23 73.73 50.36

CAD 1 2173.78 2173.14 1760.09 2512.84 2508.53 1815.27 1732.96 1575.47 1418.96 1423.56
MPE (%) 6.02 1.00 6.85 7.56 4.75 -1.67 1.29 -8.35 1.99 -4.79

REAL 1 2342.48 2213.98 1495.46 1748.28 1824.03 1720.14 1731.25 1467.53 1701.94 1518.26
2 2245.91 2181.91 1538.68 1837.17 1711.47 1798.85 1711.47 1433.87 1951.36 1710.22
3 2350.44 2343.54 1495.46 1730.69 1711.92 1750.96 1664.61 1075.60 1941.09 1873.85

Mean 2312.94 2246.48 1509.87 1772.05 1749.14 1756.65 1702.44 1325.67 1864.80 1700.78
SD 58.19 85.58 24.95 57.08 64.86 39.66 34.22 217.22 141.13 177.98

CAD 1 2453.70 2455.58 1318.87 1857.34 1869.41 1815.27 1732.61 1522.77 1742.04 1733.69
MPE (%) 5.74 8.52 -14.48 4.59 6.43 3.23 1.74 12.94 -7.05 1.90

REAL 1 2090.82 2177.36 1970.90 2370.55 2333.97 1846.06 1729.49 805.27 1798.33 1948.19
2 2136.14 2273.04 1823.94 2385.47 2560.47 1860.38 1773.35 1032.96 1676.56 1690.60
3 2012.82 2091.49 1875.81 2412.80 2424.35 1807.23 1716.87 1280.27 1580.28 1665.81

Mean 2079.93 2180.63 1890.22 2389.61 2439.60 1837.89 1739.90 1039.50 1685.06 1768.20
SD 62.38 90.82 74.53 21.43 114.02 37.50 29.64 237.57 109.27 156.37

CAD 1 2173.78 2173.14 1947.58 2512.84 2508.53 1815.27 1732.96 1182.07 1606.46 1611.07
MPE (%) 4.32 -0.34 2.95 4.90 2.75 -1.25 -0.40 12.06 -4.89 -9.75

REAL 1 2381.80 2225.93 1504.11 1817.79 1776.20 1804.06 1740.32 1346.03 1662.17 1605.54
2 2244.79 2173.83 1513.93 1691.98 1675.51 1732.54 1718.32 1351.15 1855.47 1924.44
3 2293.10 2291.09 1555.97 1758.96 1720.56 1808.49 1714.21 1307.83 1803.89 1740.83

Mean 2306.56 2230.28 1524.67 1756.24 1724.09 1781.70 1724.28 1335.00 1773.84 1756.94
SD 69.49 58.75   27.55 62.95 50.44 42.63 14.04 23.67 100.09 160.06

CAD 1 2453.70 2455.58 1449.74 1857.33 1869.41 1815.27 1732.61 1142.11 1902.48 1896.18
MPE (%) 6.00 9.17 -5.17 5.44 7.77 1.85 0.48 -16.89 6.76 7.34

Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.33
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.25

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S.17: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.25 ≤ RF ≤0.33
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error MPE(%) with respect to
the exact (CAD) measurements. Units: microns.
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S.2 Supplementary Text

S.2.1 Intact Kresling cell 3D analysis

Based on the initial geometrical configuration that leads to bistability, we parametrically

designed the 3D Kresling cells, as further detailed in S.1.2. The analyzed group of intact cases

was conformed by Kresling cells with a variable width of the creases. This term is expressed

in terms of the width versus thickness ratio, denoted as w/s. Thus, the number of intact cases

analyzed ranged within (0.50≤ w/s ≤ 2.00) with their respective notation: Int 1 to Int 11, as

shown in Fig. S.18A.
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Figure S.18: Kresling cells with intact creases analysis (A) Geometrical details of Intact creases cases, from Int 1 to Int 11,
defined in terms of the ratio w/s. Load paths within the ranges: (B) 0.50 ≤ w/s ≤ 2.00 and (C) 1.50 ≤ w/s ≤ 2.00.

The load paths obtained from the numerical simulations, depicted in Fig. S.18B, reveal that

despite the utilization of flexible creases, the intact cases did not achieved the theoretical

bistability as predicted by the preliminary five-parameters model assessment. Specifically, the

force values did not reached values below zero, preventing a second local minimum energy

state. We have observed that the intact cases with narrower creases (Int 1 to 4) ranging
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between (0.50≤ w/s ≤ 0.90), tended towards monostability and become highly stiff instead.

In contrast, the intact cases (Int 5 to 11) with wider width creases (1.07≤ w/s ≤ 2.00), exhibited

a monostable behavior. Although using flexible creases facilitates the folding process, the

Kresling cell quickly reverts to its initial configuration once the axial load is applied, and second

stable state is still not achieved, as evidenced by the load paths in Fig. S.2C. This behavior can be

attributed to the restoring force related to the viscoelastic nature of photopolymers. Therefore,

these initial results indicate that utilizing elastomeric creases requires further design strategies

to potentially achieve a bistable configuration in practice.

S.2.2 Creases design: Complementary results

The parametric study of the Kresling cells with the creases design, results from the numerical

simulations in Abaqus/CAE Standard, shown in Fig. S.19. We assessed how the gradual

reductions creases affected the energy landscape and the transition form a bistable (Bi) to a

monostable (M) behavior. As narrower the internal thickness si, the Kresling cell tends to

achieve bistability.

This is especially observed in wider creases with a ratio w/s ≥ 1.20, with an internal thickness

si and reduction factors between 0.66 ≤ RF ≤ 0.80, taking values between 0.58 ≥ si/s ≥ 0.05.

It is evidenced in the load paths with their corresponding stored energy landscapes, U, from

Fig. S.20 to Fig. S.23. Moreover, the sequential experiments conducted on the Kresling cells

within the range potentially exhibiting bistability (0.66 ≤ RF ≤ 0.80) are presented in Fig. S.24.

The results reveal a loss of load capacity of approximately 50% due to the degradation of the

thin rubbery creases (RF=0.80). In contrast, thicker creases (RF=0.66) appeared more resistant,

losing around 30% of load capacity. The analyzed Kresling cell cases were designed according

to the geometrical parameters detailed in Fig. S.25 for a 1:1 scale.
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Figure S.19: Parametric study of the creases geometry. Geometrical parameters with their attained Rotational Stiffness (K̃),
that lead to monostability (M) or bistability (Bi). ’Limit Bi’: boundary between (Bi) and (M) determined experimentally. *The
crease edge limit determines the range of reduction radius factors, RF, to maintain a Circular shape at the lower part of the
crease. Results from Kresling cells at 1:1 scale.
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Figure S.20: Load paths and stored energy (U) landscapes variation according to the crease internal thickness (si)
decrement based on the reduction factors RF. (A) C1 (w/s = 0.50), (B) C2 (w/s = 0.60) and (C) C3 (w/s = 0.75). The
corresponding curves were generated until the panels started to be in contact during the numerical simulations.
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Figure S.21: Load paths and stored energy (U) landscapes variation according to the reduction factors RF. (A) C4
(w/s = 0.90), (B) C5 (w/s = 1.07), and (C) C6 (w/s = 1.20). The corresponding curves are presented in the following order
RF: 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80.
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Figure S.22: Load paths and stored energy (U) landscapes variation according to the reduction factors RF. (A) C7
(w/s = 1.35), (B) C8 (w/s = 1.50) and (C) C9 (w/s = 1.65). The corresponding curves are presented in the following order
RF: 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80.
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Figure S.23: Load paths and stored energy (U) landscapes variation according to the reduction factors. (A) C10 (w/s =
1.80), and (B) C11 (w/s = 2.00). The corresponding curves are presented in the following order RF: 0.80, 0.74, 0.66, 0.57,
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Figure S.24: Effect of the degradation of the rubbery crease cross- sections on the load path after performing sequential
experiments on the same samples. (A) RF=0.80, (B) RF=0.74 and (C) RF=0.66. Kresling cells case C8 fabricated with
creases made of DM60, at 3:1 scale.
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V+Circular
 crease design

o
r'

s

w

 si

*Crease cutting 
radius limit

sc

 si= s-sc 
 RF = sc/r'.

Case # w/s s r' sc si si/s

1.71 0.80 0.80 1.31 0.77
0.66 0.66 1.38 0.81
0.50 0.50 1.46 0.85

1.43 0.80 0.80 1.03 0.72
0.66 0.66 1.10 0.77
0.50 0.50 1.18 0.82
0.40 0.40 1.23 0.86

1.14 0.80 0.80 0.74 0.65
0.66 0.66 0.81 0.71
0.50 0.50 0.89 0.78
0.40 0.40 0.94 0.83
0.33 0.33 0.98 0.85
0.25 0.25 1.02 0.89

1.14 0.80 0.96 0.66 0.58
0.74 0.89 0.70 0.61
0.66 0.79 0.74 0.65
0.57 0.68 0.80 0.70
0.50 0.60 0.84 0.74
0.40 0.48 0.90 0.79
0.33 0.40 0.94 0.82
0.25 0.30 0.99 0.87

0.86 0.80 0.86 0.43 0.50
0.74 0.80 0.46 0.53
0.66 0.71 0.50 0.58
0.57 0.61 0.55 0.64
0.50 0.54 0.59 0.69
0.40 0.43 0.64 0.75
0.33 0.35 0.68 0.79
0.25 0.27 0.72 0.84

0.86 0.80 0.96 0.38 0.44
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Figure S.25: Geometrical Parameters of creases with gradual reductions. Dimensions taken from the top of the Kresling
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S.2.3 Estimation of Rotational Stiffness in Creases

Whether a rubbery material is considered for the design of the creases, large deformations are

expected to be developed. The V-shape+Circular cross-section of the creases can be simplified

into an equivalent rectangular strip that delimits the zone predominantly under bending. Its

dimensions are the width w and the internal thickness si, where the latter varies according to

a reduction factor RF. Thereby, we assessed the effects of the decrement of cross-sections on

the rotational stiffness, K̃, of the designed creases. The angular rotation ψ, corresponding to

a given bending moment M applied on the equivalent section, can be estimated considering

the formulations of bending of a incompressible elastic Neo-Hookean block proposed by [10].

This method assumes that the deformed configuration of the block follows the shape of a planar

sector of a cylindrical tube with a thickness s f , an initial angle ψi and a radius r, as shown in

Fig. S.26A. The last two terms define the cylindrical coordinates of the system, thus: rϵ[r f , r f +

s f ] and ψϵ f [−ψi, ψi], being the out of plane terms neglected. The term r can be calculated by

fulfilling the impressibility constraint, where the deformed section is equal to the initial area

defined by si and w. Then, the following relation can be established:

r f =
w si

2 ψi s f
−

s f

2
(28)

Considering a Neo-Hookean response of the section, one of the principal stress components Tψ

in cylindrical form is defined as:

Tψ(r) = Go

− w2

8ψ2
i r2 +

6ψ2
i

w2 r2
− 1

 − Go

2

(
−

w2

4ψ2
i (r f + s f )2

+
4ψ2

i (r f + s f )2

w2 − 2
)
. (29)

where, Go is the initial shear modulus and the thickness s f of the deformed configuration can

be obtained by the following expression:

s f =
w

ψi
√

2

√√√
−1 +

√
1 + 4ψ2

i

s2
i

w
(30)

The bending moment M, corresponding to the stress on the deformed configuration, is

calculated by the following integration in the interval [r f , r f + s f ]:

M =
∫ r f+s f

r f

rTψ(r) d r (31)
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Using Eq.31, we calculated the bending moment M of the equivalent cross- sections, M,

obtained at a given rotational angle ranging within 0 ≤ ψ ≤ π/2. The analytical results of the

creases from cases C8 (w/s = 1.50) and C11 (w/s = 2.00) were selected for validation against

numerical simulations in Abaqus/CAE-Standard, as indicated in Fig. S.26B and C, respectively.

The thicknesses of the equivalent rectangular blocks correspond to the variable internal

thickness si generated by reduction factors ranging from 0.25 ≤ RF ≤ 0.80. Moreover, the

corresponding mesh was created using biquadratic hybrid elements (CPE8RH). The equivalent

rectangular blocks were subjected to bending until reaching a rotational angle of ψ = π/2

allowing us to obtain the corresponding bending moment M. This demonstrated the close

alignment between the FEA calculations and the analytical formulation. Furthermore, the plots

from Fig. S.27 depict the bending moment values obtained in Eq.31 at a given rotational angle

0 ≤ ψ ≤ π/2, applied to the equivalent cross-sections corresponding to crease cases C1 to C11,

along with their respective reduction factors RF, as well as the related intact crease cases.
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Figure S.26: Rotational stiffness calculation. (A) Bending of an incompressible rectangular block equivalent to the crease
cross-section. Comparison of analytical and FEA results for the bending moment, M, and angular rotation, ψ, in cases: (B)
C8 (w/s = 1.50) and (C) C11 (w/s = 2.00). *Note: Results are presented in the order reduction factors ranging from
0.25 ≤ RF ≤ 0.80, representing a variable si

Then, the rotational stiffness was obtained using the expression: K̃= M/ψ. We observed

that rotational stiffness depends on the variation of internal thicknesses si, their associated

reduction factors RF, and the width of the creases w. For instance, bistable creases with

thinner internal thicknesses, generated by reduction factors 0.66 ≤ RF ≤ 0.80 and ranges of

0.40 ≥ si/s ≥ 0.30 (C8) and 0.21 ≥ si/s ≥ 0.05 (C11), achieved the highest angular rotation

value ψ = π/2 ≈1.57 rad at lower bending moments. Consequently, they exhibited higher

flexibility and lower rotational stiffness than their thicker creases counterparts, which fall within

the ranges si/s ≥ 0.57 (C8) and si/s ≥ 0.37 (C11), as previously shown in Fig. S.19.
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S.2.4 Effects of creases viscosity on bistability: Complementary Results

The assessment of bistability in Kresling cells with creases made from different rubbery

materials is presented in Fig. S.28, which is constructed from the load paths and energy

landscapes illustrated in Figs. S.29-S.32, based on analyses of Kreling cells at 1:1 scale (x1).

We determined whether creases with varying viscosity and relaxation moduli can still achieve

bistability, as explored in the parametric study in section 2.1. The numerical simulations were

conducted for a time duration corresponding to the limits of the initial (τ∗i ), short- (τ), and

long-term (nτ) relaxation regions to predict whether viscosity effects influence the achievement

of bistability at different time scales. Moreover, we conducted experiments on Kresling cells

(C8 RF=0.80, fabricated at a 3:1 scale) with creases made of AG30, DM60, DM70, DM85,

and DM95, as shown in Fig. S.33. An average load capacity loss of approximately 50% was

observed due to degradation of the crease cross-sections, with lower peak load decrements in

softer photopolymers (AG30, DM60, and DM70) which have lower viscosity and relaxation

moduli.
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S.2.5 Monomaterial Kresling cells: Complementary Results

The load paths and stored energy landscapes of the rubbery photopolymers DM60, DM70

and DM85 are shown in Fig. S.34. They exhibited monostability and complement the analyses

presented for monomaterial Kresling cells, as described in section 2.5.
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Figure S.34: Load paths and energy landscapes of Monomaterial Kresling cells. Cases with variable void inclusions along
the creases: (A) M-1 and (B) M-2. Results of Kresling cells at a 1:1 scale.
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S.3 Captions for Supplementary Videos

Caption for Video S1. Experimental validation of the parametric study on crease

geometry of 3D printed Kresling cells. Comparison between Numerical (FEA) and

Experimental (Exp) load path results from compressive tests on the C8 case. Kresling cell

creases, generated with reduction factors RF = 0.80, 0.66, and 0.50, exhibited bistable or

monostable behavior.

Caption for Video S2. Hands-on Experimental validation of Bistability in 3D printed

Kresling cells. Evidence of bistable or monostable behavior in various Kresling cells with

creases made of DM60. The creases were generated with reduction factors in the range

of 0.25≤RF≤0.80 and an intact crease case (INT).

Caption for Video S3. Experimental validation of the crease degradation in 3D printed

Kresling cells. Effect of rubbery crease cross-section degradation on the load path, observed

after three sequential experiments on the same sample (C8, RF=0.80, creases made of DM60).

Caption for Video S4. Effects of viscosity on bistable Kresling cells: Hands-on

experimental validation. Evidence of bistable or monostable behavior in Kresling

cells (C8, RF = 0.80) with creases made of rubbery materials that have different

viscosity and relaxation modulus compared to DM60 (G60=0.220 MPa):AG30 (G∞=0.7G60),

DM70 (G∞=1.4G60), DM85 (G∞=2.6G60), and DM95 (G∞=3.9G60).

Caption for Video S5. Programmable Monostable Kresling Assemblies. Compression

test, folding process, and load paths from numerical (FEA) and experimental (EXP) analysis

for the following cases: (i) all creases made of DM60, (ii) stiffer creases (DM95) in the even

layers, and (iii) stiffer creases (DM95) in the odd layers. Numerical simulations stopped at the

first contact between panels.

Caption for Video S6. Prototyping of 3D printed Kresling cells via Polyjet technique.

Different stages of fabrication and post-processing for multi-material 3D-printed Kresling cells

using a Stratasys J750 printer within the PolyJet framework.
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