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S.1 Materials and Methods

S.1.1 Initial sizing of Kresling cells

We determined an initial geometrical configuration of the Kresling cell that could potentially

exhibit bistability. The approach relied on a five-parameters model incorporating the elastic

deformation of stretchable mountain and valley creases [1, 2] with their rotational behavior [3].

As illustrated in Fig. S.1A, we first considered the following initial geometrical parameters:

an initial height denoted by #,, upper and lower polygons with n sides circumscribed within a

radius r, an initial relative angle 6, between these polygons. The original lengths of the creases,

denoted by a, (side of the polygon), b, (peaks), and c, (valleys), and their corresponding

dihedral angles 6,,, 05, and ., can be calculated using the expressions:
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When the compressive load F is applied to the top of the Kresling cell, it produces an axial

displacement u and a twisting rotation ¢ between the upper and lower polygons, while the

final height of the Kresling cell becomes 4, as shown in Fig. S.1A. Furthermore, the length of

the crease corresponding to the side length of the polygon a, remains constant with negligible

deformation, as it remains circumscribed within the polygon’s circle of radius r. At this stage,
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it can be considered that a = a,, and the lengths of the creases corresponding to the peaks, b,

and valleys, ¢ with their respective dihedral angles d,, 0, and ¢, are defined as follows:

b= \/4;»2 sin2 (g) T (hy — 1) %
2
¢+ —
c= |4r2sin? 5 1+ (h, —u)? (8)
h,—u
0, = atan €))
2rsin (¢) sin (i + g)

(h, — u)*cos (¢ + —) cos ¢ + Z) — cos (%)]2

(h, —u)* +r? [cos (g/) + ;) - cos (g)r

(hy — u)’cos (¢) — r? [cos (¢ + %T) — cos (g)]z

(h, —u)* +r? [cos (qb + %) - cos (g)]z

0p = T —acos (10)

0. = T —acos (11)

During the compression process, the total elastic energy stored in the creases, denoted as
U, can be calculated as the sum of the deformation energy of the peaks and valleys, U,,
and the contribution from the rotational springs of the creases, U, as given by the following

expressions, which are defined by five parameters: b, c, d,, d, and o..

1 1
Ub = E”KAb(b - bu)2 + EnKsc(C - C())2 (12)
1 , 1 , 1 2
Uy = 51Ky = 8ao)” + 51K(8 = 6p0)” + 31K(6c = 6co) (13)
U=U,+ U, (14)

Here, Ky, and K, represent the stretching stiffness of the peaks and valleys, respectively,
while the rotational stiffness of the creases is represented by K, for the side polygon, K for
the peaks, and K. for the valleys. The total potential energy in the Kresling cell, [1(«) , can be

determined by the sum of the total elastic energy stored in the creases U, and the work done by
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the external force F that produces an axial displacement u:

II(u) = U — Fu (15)

If we adhere to the principle of minimum total potential energy, we can identify an equilibrium
state [4]. Thus, we assume that:

OIl/6u =0 (16)

Then, we can define the applied axial force F, under the mentioned equilibrium conditions

and in terms of the total elastic energy stored energy in the creases, as follows:

F =6U/éu A7)

The previously mentioned equations enabled a preliminary evaluation of various geometrical
configurations to determine the initial sizing of a Kresling cell. The energy landscapes
calculated from Eq. 14, determined which initial geometrical parameters can be used to shape
Kresling cells prone to ensure a second local of energy minimum and satisfying the condition
oU/éu = 0, for further analyses. The geometrical configurations considered in this preliminary
assessment include: aspect ratios &, /r within the range of 0.4 to 2.25, polygons with a number of
sides equal to n=6 and initial rotational angles 6, ranging from n/4n to 37/n (7.5° < 6, < 90°).
The total elastic energy stored in the creases U, and axial displacement u, were normalized to

represent dimensionless quantities in the plots.

The stretching stiffness K is defined in terms of Young’s modulus E, and cross-sectional area
A as K; = EA. By defining the stretching stiffness of the peaks and valleys per unit length, we
obtain Ky, = K;/b, and K. = K;/c,, respectively. Similarly, the rotational stiffness K, can be
also expressed per unit length, with K, = Kb, for the peaks and K. = Kc, for the valleys. For
this initial analysis, the contributions of both stiffness components to the total elastic energy
were introduced as three different ratios: K/K, = 0,0.5x107*,1.0x10™*. As a result, two main
scenarios were observed during the compression process of the Kresling cells: Bistability (Bi)
and Monostability (M), as illustrated in the plots of Fig. S.1B. When considering a rotational
stiffness K = 0, the results correspond to those obtained by the bar and truss model defined by

two parameters, (b,c).

Configurations with an initial rotational angle within the range 15° <6, < 60° and an

aspect ratio h,/r > 1.5 exhibited an apparent bistability. Those Kresling cells showed
S5



(A)

(B) =M *Bi
K/Ks=0.5x10" K/Ks=1.0x10" ks |
80 80 80 B
14
60 60 60
>
10
@ 40 40 40
6
20 20 20
2
0 0 0 .
© S x107
o KiKs=1.0x10" 6r KIKs=1.0x10"]
4 R K/iKg=0.5x104] | e K/Ks=0.5x10"
N F —K/K<=0 —K/Ks=0
b ° o 4r s
r 20 ] X
) *
0 2r ]
L ke
_2 [ n I I 1 n |~.-—-: n I n n 1 O n n n 1 I I 1 n h L I
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
ufr ulr

Figure S.1: Initial sizing of the Kresling cell. (A) Kresling cell geometrical parameters during compression/expansion
process. (B) Initial assessment of monostable (M) and Bistable (Bi) configurations through a five-parameters model, by
considering their initial relative angle 6, and aspect ratio h,/r and rotational versus stretching stiffness ratio K/K;. (C)
Normalized Force (F) and Energy (U) plots versus normalized displacement u/r of the configuration 6, = 30° and h,/r=1.75.

normalized energy landscapes with a second local of energy minimum (6U/éu =0). In
addition, we observed that the majority of configurations with initial rotational angles lower
than 6, = 40° and h,/r <1.5 tended to present a monostable behavior. While those with
higher values, 6, > 60°, allowed small rotational displacements limiting the folding process
and the panels tended to overlap prematurely. In contrast, Kresling cells with initial relative
angles 6, < 7.5°, were prone to buckle during the initial folding stages, displaying an almost
rigid behavior and higher energy values. Furthermore, Fig. S.1C presents the corresponding

normalized force and elastic energy landscapes obtained for the configuration: 6, = 7/6, and

h,/r=1.75. It exhibited a potential tendency towards bistability in all the evaluated scenarios
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(K/K, =0,0.5x10*,1.0x10~%). Thus, we selected these geometrical parameters for the initial

sizing of the Kresling cells used in the subsequent analyses.

S.1.2 Parametric design of 3D Kresling cells

The 3D CAD parametric models were generated in Autodesk Inventor following the initial
geometrical configuration: polygons with n = 6 sides, initial relative angle 6, = /6, initial
height versus radius ratio h,/r=1.75, and panels thickness s = 0.04h,. The parametric design
process is summarized in Fig. S.2. Firstly, the upper and lower polygons are defined in 2D
sketches and rotating with respect to each other in an angle equal to 6, = 30°. The panels
thickness s was defined through an offset to the polygons’ perimeter and the width limit of the
creases was determined by auxiliary circles with radius #’. Then, 3D sketches were constructed
to enable the 3D structure of the panels, and by using the command Boundary-surface their
profiles can be linked to form the surfaces of the panels. Next, the surfaces were merged with
the Patch command, and volumetric bodies were obtained to shape the panels and the creases.
As aresult we obtained a 3D Kresling cell which represent the intact crease case.

The creases were designed with gradual reductions in their cross-sections, preserving a V
shape at the top and a variable circular shape at the bottom. A cutting radius s. = r".RF
is defined according to the imposed reduction factors from 0.25< RF < 0.80, decreasing the
external thickness s and an internal thickness s; is obtained. Afterwards, the 3D CAD model

were saved as *.step files for the Abaqus/CAE numerical simulations.

Bottom polygon Top-Bottom 3D sketch 3D CAD File

sketch polygons / E—

/

s
*Crease; |
cutting '

' LA
6 I
! /
_______________________ radius ., /
limit /"~~~ -7

RF=s./r'

Figure S.2: Parametric design process of a 3D Kresling cell. Creation of former 2D and 3D sketches in Autodesk Inventor.
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S.1.3 Numerical simulations considerations

The entire modeling process for simulating the kinematics of Kresling cells and generating
the load paths for the parametric study is schematized in Fig. S.3. The input 3D CAD files for
the Kresling cells models were saved as *.step files to be imported from Abaqus/CAE Standard
for their assembly. Traditionally, 3D printed Kresling cells have been designed and modeled as
linear elastic shells. This is particularly applicable to polymeric sheets with thicknesses less than
1 mm, while also considering the use of rigid or flexible materials. However, employing rubbery
creases, which are treated as nearly incompressible material, requires the use of hyperelastic
models with 3D hybrid modified formulation elements to achieve more realistic results.

In addition, complex and irregular 3D geometries such as Kresling inspired structures, require
the use of tetrahedron elements besides the application of free mesh with partition strategies.
Thus, intricate shapes can be accurately modeled while maintaining computational efficiency at
the same time. Given the hyperelastic nature of the flexible Polyjet photopolymers, the selected
mesh was composed by 10 node quadratic tetrahedron with hybrid modified constant pressure
elements C3DIOMH. An adaptive mesh refinement study determined a suitable mesh density
that enables the achievement of convergence within a balanced computational time.

Four types of tetra-mesh from a coarse to refined number of elements were analyzed
comparing their obtained maximum force, that leads to the highest stress concentrations on the
Kresling cell, as well as the CPU time and refinement error (Rg(%)), as described in Fig. S.4.
The latter was obtained by using the expression: 100 (Fy; — Fy4)/ F s, where Fyy; represents
the maximum force obtained in the numerical simulation with each mesh case i, F4 1s the
maximum force from the last attempt corresponding to the very refined mesh case M4. The
selected mesh corresponded to the case M3, which is formed by minimum three elements
assigned across the panels and creases cross-sections. This refined mesh fitted more accurately
to the Kresling cell geometry, reducing modeling errors and ensuring convergence.

Moreover, kinematic couplings were assigned between the reference points RP and the top
and bottom ring surfaces to effectively transmit the applied displacement, and the assigned
boundary conditions along the entire cylinder. The constitutive models used in the analyses
included an elasto-plastic model for the rigid photopolymers assigned to the panels, and
a visco-hyperelastic model for the flexible materials assigned to the creases.The material
characterization data necessary to define these constitutive models were obtained through

uniaxial tests, detailed in the following sections S.1.5 and S.1.6, and summarized in Tables 1
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Figure S.3: Numerical simulations process in Abaqus/ CAE Standard. Mesh generation, boundary conditions (BC) and
example of obtained results in terms of Von Mises stress in MPa, VM, and vertical displacement, u, in mm. *RP, represents the
reference point where the vertical displacement is applied, generating a restoring force Fr considered for the load path plots.

and 2.

Furthermore, tie constraints were used to create a uniform contact among the panels, creases,
top and bottom ring surfaces. Fixed boundary conditions were applied at the bottom of
the cylinder, specifically at reference point RP;, to restrict displacements and rotations in
all directions. A vertical displacement, u, approximately equal to one third of the initial
height of the Kresling cells (= 1/3 h,), was imposed at the top in the respective reference
point RP, and the corresponding applied Force was computed to determine the respective
force/displacement curves. This target displacement prevents further overlapping of the panels
during the compression of the Kresling cell.

The rotation at the top was released to simulate the natural twisting plus compression motion
of Kresling cells. A VISCO step was used to perform quasi-static analyses, incorporating
time-dependent material behavior without inertia effects. The geometric nonlinearity option
(NLGEOM) was activated to consider large deformations in the analysis. We first focus on the
initial relaxation region of the analyzed rubbery materials within a time defined as 7, during
which most of the stress decay occurs, as shown in Fig.4B, to observe the viscosity effects

during bistability achievement. Then, the total simulation duration ¢, was estimated to lie within
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4 T T T T Mesh # elements Cr, PA, CPUye (S)  Rg (%)
M1 11816 1.10 1.00 731 3.85
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Figure S.4: Mesh refinement study parameters. Based on the maximum force achieved, Max(F), total number of elements,
including number of seeds along creases (cr,) and panels (PA;), CPU time in seconds and refinement error percentage (Rg(%)).
this initial relaxation region by using a velocity of 0.1 mm/s to reach the target displacement
u. The VISCO step was defined with a initial time size set to 0.01¢#,, while the maximum
and minimum increments were 0.1¢, and 1075, respectively. Thus, we can accurately capture the
viscosity effects and ensure the convergence by reducing the number of increments in the solver.
In addition, we performed simulations for each rubbery material over extended time periods to
predict whether bistability can also be achieved in both short- and long-term relaxation regions.
For instance, to determine the total simulation duration ¢, for the short-term relaxation region,
we considered a reference time 7 equal to the highest 7; term from the Prony series described in
Table 2. In this region, a lower stress decay in the relaxation curve of each rubbery material was
also observed. For long-term effects, when the material is fully relaxed and the stress relaxation

curve approaches a horizontal asymptote, we used total simulation durations ¢, of nt, with n=6.

S.1.4 Design and Fabrication of samples for tensile tests

Polyjet photopolymers main groups can be classified into rigid thermoplastics, rubbers and
a hybrid types of composites, so called Digital Materials. The latter represent a combination
between glassy and flexible polymers, with various levels of shore hardness from A30 to A95.
In the present study, the selected rigid photopolymers were VeroYellow, VeroBlack and Digital
ABS. The tested rubbery Digital Materials were: AgilusClear 30 (Shore A30), FLXA-YT-S60
DM (Agilus30 + Vero Yellow, Shore A60), FLXA-9970 DM (Agilus30 + VeroClear, Shore
A70), FLXA-9985 DM (Agilus30 + VeroClear, Shore A85) and FLXA-YT-S95 DM (Agilus30
+ VeroYellow, Shore A95). In this study they are referred with the acronyms AG30, DM60,
DM70, DM85 and DM95, respectively.

All the samples were fabricated using a 3D printer Stratasys J750 with a layer resolution of
approximately 27 microns in High-Mix mode. The support material was first smoothed in a

soapy water solution bath for one hour and then, it was removed using water jetting.
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Figure S.5: Specimens made of photopolymers for uniaxial tests. (A) Fabrication via Polyjet technique with orientations
along the X,Y,Z axis of the build tray. (B) Experimental setup for uniaxial tests.

For the uniaxial tensile tests, dog-bone-shaped samples were designed following the ASTM
D638 standard for rigid polymers, and the ASTM D412 standard for rubbers. Five samples
were fabricated for each material type. They were printed in three directions: longitudinal (X),
transversal (Y) and perpendicular (Z) to the build tray, as shown in Fig. S.5A. For the stress
relaxation tensile tests conducted on the rubbery material, dog-bone sample design adhered
to the ISO 6914, ASTM E328, and ASTM D412 standards. Three samples were printed
longitudinally oriented to the build tray for each type of Digital Material.

S.1.5 Uniaxial tensile tests and constitutive models

The uniaxial tests were carried with a MIDI 10 testing machine by imposing a cross-head
velocity of 0.1 mm/sec, as shown in Fig. S.5B. The tests stopped when fracture occurred in
the sample. During the test both applied displacement and load were recorded. In particular,
two types of load cells with different capacities were used to measure the applied tensile load
during the experiments: 100kN for rigid polymers, and 10 kN for rubbery materials. The data
rate acquisition was equal to 1 sample/sec. The constitutive models employed in the numerical
simulations, were obtained based on experimental data from the previously mentioned uniaxial
tests. The average among the different printing orientations, in X,Y and Z, was considered for
the mechanical properties estimation. In the case of rigid photopolymers, such as VeroBlack
(VB), an elasto-plastic model was selected. The average stress-strain curves and Young’s

modulus are shown in Fig. S.6A and B, respectively. The Young’s Modulus was estimated
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from the slope of the o — & curves within the elastic range. The latter is determined by fitting a
straight trendline to the experimental curve, which extends from the beginning of the curve to
the point where the R? values approach closest to 1. The elasto-plastic behavior was modeled
in Abaqus/CAE standard, considering the experimental (o — &) curves by using the material

calibration utility.

First, the nominal (o — &) curves inputs get converted into true strains (g;) and true stresses
(o) with the expressions: &, = [n(1 + ) and 0, = (1 + €). The Young’s modulus is calculated
as previously explained and used as an input datum. Thus, the yield point can be identified and
the plastic strains, ~, and stresses, 0%, are finally estimated to characterize the elasto-plastic
model: (g = efL + £F). Moreover, we evaluated the loss of mechanical properties over time
of rigid photopolymers from the Vero group, such as VeroBlack (VB). Similarly, samples were

fabricated and tested one day, one and six months after, following the mentioned uniaxial test

procedure.
(A) (B)
60 L L L B | 2000 T T T T
1 VB-Z* 1 1500 - 2 ]
40+ .
. VB Avg* —
g | | g
s . = 1000 |- -
o VB-Y*  VB-X* o
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500 |- -
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l VB Avg*
~ g l
& =
= <
w F o
1200 - .
1000 L Il L Il L Il L Il L Il L L
30 60 9 120 150 180 1 30 180
t (days) t (days)

Figure S.6: VeroBlack experimental data. (A) Average Stress-Strain (o — €) plots. (B) Average Young’s modulus E +/-
standard deviation obtained per each group of samples with a printing orientation in X, Y, and Z axis, and overall average (VB
Avg*). Loss of mechanical properties, including: (C) Young’s modulus, E, and (D) Ultimate tensile strength, o, due to aging
effects analyzed using data obtained from tests conducted after 1 (E=100%), 30, and 180 days of sample fabrication.
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Rubbery materials are mostly defined by strain energy potential functions due to their
hyperelastic behavior. Their mechanical characterization requires a further step to find a model
that fits the nominal curves (o — €) with the tensile tests of the Digital materials group: AG30,
DM60, DM70, DM85 and DM95. Considering that the experimental data was obtained from
uniaxial tests, the material constants C;; from linear hyperelastic polynomial models were
fitted to the nominal stresses. Thus, they were calculated through a least-squares method in
Abaqus/CAE material model calibration tool [5]. Then, the relative error (RE) of the stress

measure is minimized and it is defined by the expression:

th\2

RE=Y(1- 25 (18)
i=1 g

i

where ;" represents the experimental stress measures and o is the nominal stress. In this
case, the latter is determined by the tensile uniaxial stress 7, which is derived from the strain

energy potential U and the stretch in the loading direction A;, as follows:

ou (9U) (19)

T, =2(1 - 1;3)(11—_ +—=
(9[1 812

Thereby, a Neo-Hookean model fitted the nominal stresses of the tested digital materials group
from AG30, DM60 to DM95 as Fig. S.7A depicts. The fitting was obtained with relative
errors between the range 5% < RE < 10%. Moreover, this strain energy function is described
in Invariant base form as: Uy = Cyo(I; — 3), and its equivalent stretch base is written as:

_ Mo

UN—T

(2 + 22+ 224,72 -3), (20

Additional mechanical properties, including average elongation at break (g;), were determined
from the experimental curves (o~ — €), as shown in Fig. S.7B. Other hyperelastic models, such
as Mooney-Rivlin and Polynomial N=1, showed higher relative error values ranging from

10%< RE < 32%, and they also presented unstable strains during the calibration process.
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Figure S.7: Rubbery Digital materials (DM) experimental data. (A) Average stress-strain curves obtained during the
uniaxial tests (Exp) and hyperelastic models fitting with Neo-Hookean (NH-Fit) strain energy potential. (B) Average Elongation
at break, &, +/- standard deviation. (*) Average obtained per each group of samples with a printing orientation in X and Y axis.

S.1.6 Stress Relaxation tests and Viscoelastic parameters

Rubbery materials present high sensitivity to strain rates and time-dependent behavior, which
can be further characterized by a visco-hyperelastic model. The time dependent constitutive
equations that define linear viscoelastic materials, are based on the stress and strain history,
loading-displacement rate and loading application time. Polyjet elastomers usually exhibit a
significant relaxation of their peak stresses in a short time span, some of them reaching it in 20

seconds [6].

The most common viscoelastic models are based on the combination in series or in parallel of
linear elastic (springs) and viscous components (dashpots). Then, the viscoelastic components
can be determined by conducting a stress relaxation test and therefrom, obtaining the subsequent
Prony parameters. The load and time data considered for determining the viscoelastic properties
are recorded once the imposed strain value g, is reached. The initial part of loading phase,
where the strain is rapidly increasing, is usually disregarded. After this initial phase, a time
t=0 is established as the starting point for analysis under a constant strain &y, together with an
initial stress o and the corresponding elastic instantaneous modulus E,. Therefore, the time
dependent stress o () is defined by:

o(t) = E(te, (21)

Considering that the material behaves as a Maxwell solid, the time dependent relaxation

modulus E, can be expressed in terms of a Prony series expansion and calculated from E, [7],
S14



as shown below:

N
E()=E,|1- Z E(l - e—f/ff)] (22)
i=1

where E; corresponds to the “i-th” Prony coefficient, N represents the total number of terms
of the Prony series, and 7; is the relaxation time constant. Thereby, the Tensile relaxation
modulus E(?), can be determined by E(t) = o(t)/&y. Then, the Shear relaxation modulus G(¢),
can be obtained by the expression: G(¢) = E(¢)/ [2(1 + v)] and the corresponding values per
each analyzed rubbery photopolymer are illustrated in Fig. S.8A. Furthermore, the tensile
instantaneous relaxation modulus E,, corresponding to the time t=0, is defined by E, = 0/&y.
Similarly, the shear instantaneous relaxation modulus G,, is calculated by G, = E,/[2(]1 + v)].
The Poisson’s ratio v of elastomeric photopolymers and composites with shore hardness
between DM60 and DM95, can vary from 0.48 to 0.46, and 0.49 for the rubbery AG30 [8].
The rate-independent behavior of the material can be defined as hyperelastic under large
strains in Abaqus/CAE solvers and being described by the instantaneous relaxation tensile
modulus. After, we estimated a normalized shear relaxation modulus from the experimental
curve (G(¢) —t) employing the expression: G, = G(t)/Gy. Thus, Eq. 22 can be re-written in
terms of the normalized shear relaxation modulus G,,(¢), and the dimensionless Prony constants

gi, as follows:

N
G(t) = 1= gl =€) (23)
i=1

In addition, the long-term shear relaxation modulus G, is defined by the shear instantaneous

relaxation modulus G, and the dimensionless Prony constants g;, as given by Eq. 22:

N
G =G, (1 - g,.) 24)

i=1

Assuming a linear viscosity and nearly incompressibility of the material, given that the
Poisson’s ratio of the studied rubbery materials ranges within 0.46 and 0.49, the long-term

tensile relaxation modulus can be estimated as: E., = G[2(1 + v)].

The viscoelastic material properties, defined by the dimensionless Prony series parameters,
can be determined by fitting them to experimental relaxation test data. For this reason, a series
of stress relaxation tests in tension were performed by adapting the ISO 6914 and ASTM E328
standards. Three different constant strain values, &y = 10%, &9 = 15%, and &y = 25%, were

imposed on each rubbery sample.
S15



The stress relaxation tests for rubbery materials were conducted with a MIDI 10 testing
machine by imposing a cross-head velocity of 0.1 mm/sec and at controlled room temperature
(23 °C). A 10 kN load cell measured the applied tensile load. When the displacement
corresponding to the target strain was reached, the machine stopped and the load relaxation
was monitored. At this point, an initial time ¢ = O is established in the force-time curve (F-t),
along with its corresponding peak force F, and a constant strain &,. The tests were considered

concluded when the force-time curve (F' — t) approached an almost horizontal asymptotic line.

Subsequently, the stress depending on time o (f) was calculated by dividing the force F(¢) by
the cross-sectional area of the sample A,. This conversion transformed the force-time (F' — f)
curve into a stress-time (o0-—¢) curve, which begins at the peak stress o,. Next, the average (o—1)
curves for each group of samples subjected to constant strain values, &y = 10%, &y = 15%,
and gy = 25%, were obtained. Since the Kresling creases are designed to overcome large
deformations, and ISO 6914 standards recommend the use of high strain values, we selected
the maximum strain value (g,=25%) for estimating the Relaxation modulus and the Prony
series parameters. The difference between the G(¢) and G,(f) curves obtained from the average
values and the selected maximum strain (£,=25%) was not significant. We then applied these
obtained Prony coefficients to the constants within the strain energy function Uy(¢) in order to

introduce the rate-dependent behavior associated with viscosity. Consequently, in the case of a

4

Neo-Hookean material model defined by an instantaneous constant CY,

the visco-hyperelastic

relaxation function can be expressed as follows:

N
Un(r) = €y (1 - el - e’/“>) (25)
i=1

These parameters are then incorporated into a visco-hyperelastic constitutive model described
by Eq. 25 for subsequent numerical simulations in Abaqus/CAE. Then, we fitted the
obtained Prony parameters to the experimental data (G, — t) using a damped least squared
method (DLS). It was implemented using a Matlab optimization toolbox script based on the
Levenberg—Marquardt algorithm. As a result, the selected fitting coeflicients correspond to the
lowest goodness of fit values, as shown in Fig. S.8B. The latter is obtained from the norm of

residuals, denoted as ||e|| and calculated as follows:

n

lell = [ > €2, (26)

i=1
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where the residuals e; represent the sum of the differences between the observed y; and predicted
values f(x;), being defined as: e; = y; — f(x;).
(A) (B)

G (t) (MPa)

o 1+ 2 8 4 5 6 7 10° 10 102 103
t (sec) t (sec)

Figure S.8: Stress relaxation tests of the Rubbery Digital Materials AG30 to DM95. (A) Relaxation function G(t) with the
corresponding Instantaneous modulus G,. Units: MPa. (B) Experimental and fitted data of the Normalized shear relaxation
modulus G, (t), in logarithmic scale with their respective goodness of fit in terms of the norm of residuals ||e||, where: AG30 |le|| =
3.9x107*, DM60 |le|| = 4.0x10~*, DM70 |le|| = 5.8x107*, DMSS5 |le|| = 3.1x1073, DMO95 |le|| = 2.5x1073.

Material E (MPa) o, (MPa) &, (%) o, (MPa)
VeroBlack 1543.58 19.79 15.75 44.89
UTL Resin (BMF)  567.00 10.00 40.80 14.10
Origin 402 42.00 - 230 55
IP-PDMS 15.30 - 240 -

Table 1: Elastic and Elasto-plastic materials mechanical properties.

AG30 DMé60 DM70 DMS85 DM95
Cip=0.111 Cio =0.157 Cip=0.163 Cio =0.237 Cio = 0457
E, =0.545 E, =0.782 E, =1.398 E, =3.200 E, =6.621
E. =0.459 E. =0.651 E. =0.938 E, =1.676 E, =2.498
G, =0.183 G, =0.268 G, =0479 G, = 1.095 Go = 2.267
G =0.154 G =0.220 G =0.317 Go =0.570 G =0.855

8i Ti 8i Ti 8i Ti 8i Ti 8i Ti

0.030 7.612 0.035 10350  0.060 10.717  0.071 10.787  0.143 11.435
0.052 64.359 0.055 98.390 0.099 93980 0.132  78.847  0.189  93.977
0.045 333.610 0.048 547.863 0.090 498.890 0.131 404.112 0.154 520.646
0.030 2310.2422 0.041 4151.017 0.089 3632.445 0.146 3116.457 0.137 3697.450

Table 2: Flexible materials mechanical properties and Prony series parameters. *E,, E.,, G,, G, units in MPa
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S.1.7 Fabrication protocol via Polyjet 3D printing technique

The 3D printed Kresling unit cell fabrication process contemplates three main stages:
Design, 3D printing and Post-processing. During the design stage, the 3D CAD parametric
models were generated in Autodesk Inventor. The selected geometrical configuration for
the experimental validation of the Kresling cells is: C8 case, polygons with n = 6 sides,
6, =n/6, h,/r=1.75, t = 0.04h,, creases width/thickness ratio w/s =1.50 and RFF < 0.66.

The Kresling cell dimensions 4,=17.5 mm and r=10 mm, were scaled three times in order to
make feasible their printing and to avoid the dimensional limitations regarding manufacturing.
The other geometrical parameters and ratios were maintained to keep the proportions of
the analyzed Kresling cells. The parametric design process was previously summarized in
Fig. S.22, section S.1.2. The 3D CAD model were saved as Parasolid files (x.x;) to facilitate
the exportation of the assembled components in a unique file for 3D printing. At the same time,
it enables to identify separately the different components of the Kresling cells, such as panels,
peaks, valleys and rings, for the assignation of different materials.

For the printing process, the GrabCAD software was used for the preparation of the printing
files to be send to a Stratasys J750 printer series, including automatic slicing. Once the files
are imported, the respective dimensions and position along the build tray are controlled. Since
the panels were conceived to be made of rigid materials, the VeroBlack photopolymers was
selected. In the case of the creases, the following flexible materials were employed in different
Kresling cells: AG30, DM60, DM70, DM85 and DM95. The selected support material was
SUP706B with the standard grid density mode. It is important to remark that supports were
also assigned to the panels during the printing process, because of the presence of inclined
faces with respect to the build tray. The printing setting was the following: High-Mix mode
with a layer resolution thickness of 27 microns and matte surface finishing.

The post-processing operations include mostly the supports removal, which demands to be
meticulously carried on specially considering the small dimensions of the Kresling cells creases
being at the edge of Polyjet manufacturing limitation < 1.0 mm. The prolonged contact with
water or alkaline solutions of small elements and multi-material interfaces lower than 1.0 mm
cross-section, lead to a premature breakage and detachment. For this reason, the exposure of
the 3D multi-material sample to humidity should be controlled. As an alternative, the support
residues were carefully removed mostly by hand and briefly rinsed in water for less than five

minutes.
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Magnets for
the setup link

Figure S.9: Fabrication of multi-material Kresling cells. (A) Polyjet printing process and multi-material deposition of rigid
(VB), flexible (DM60) and support grid (SUP706B). (B) Support material distribution along the samples with matte surface
finishing. (C) 3D printed Kresling cell from case C8 (RF=0.80) used in the experiments, with the following dimensions: r=30,
hg=3, hy=52.50, and thickness of the panels s=2.25. Units: mm. Scale bar: 10 mm.

S.1.8 Experimental setup

A further experimental validation was carried on to involve quasi-static tests on the 3D
printed Kresling cells to validate the numerical simulations results. A compression load was
applied at the top of the Kresling cell with a Messphysik u-strain loading frame machine (from
ZwickRoell, 0.01 um stroke measurement resolution). The experiments were performed at a
testing speed of 0.1 mmy/sec. The applied Load F and displacement u were measured with a AEP
TYPE FI1-1kN load cell and with a displacement transducer mounted internally to the testing
machine, respectively. The tests were stopped once a displacement u = 1/3h, was applied the
sample. The experimental setups, shown in Fig. S.10, consists of two fixtures. The top fixture
guarantees free rotation, ¢, during the folding of the Kresling (allowing the natural twist under
compression inherent to Kresling patterns kinematics), while the bottom fixture prevent both
displacements and rotations [3].

The free rotational fixture is formed by a rotating plate coupled to a ball bearing (SKF 608
SKF 8x22x7) and a rotational fastener. The Kresling cell samples are directly linked to the
top and bottom plates through two different systems. The first one consisted in a female-male
connection system used for the Kresling cells with thicker creases, as shown in Fig. S.10A. Pins
were created on the surfaces of the samples rings and distributed to coincide with the vertices
of the hexagonal polygons. These pins were then inserted into the corresponding holes located
in the plates. However, in this system, when using Kresling cells with thinner creases, the

samples tended to slide. To prevent this problem, we implemented a second connection system
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based on magnets applied to the top and bottom of the samples and the plates, as described in
Fig. S.10B. The components of the first setup were 3D printed using the PolyJet technique on
a Stratasys J750 3D printer, with tolerances of +0.2 mm for holes and insertions. In contrast,
the second setup was printed using the DLP technique through an Origin-One printer, with

tolerances between +0.1-0.25 mm for the magnet holes and insertions.

(A) .
Rotating fastener —¢ Iu ‘ Iu

F
Ball bearing @

(B)
Rotating fastener

Ball bearing

Free rotating plate Free rotating plate

Magnet

Pin

Kresling unit cell Kresling unit cell

Magnet
Insertion hole
Fixed support plate

Figure S.10: Experimental setup for compression test with an applied Load F and displacement u. Exploded schemes of
the experimental setups with a fixture at the top, enabling a free rotation ¢, and a fixed support fixture at the bottom with the
following connection systems: (A) Pins and (B) Magnets.

Coupling-hole

Fixed support plate

S.1.9 Hands-on experimental validation of Bistability

A manual compressive force was applied to the top of the Kresling cells, allowing free
rotation at the top while constraining all displacements and rotations at the bottom. This action
enabled us to recreate their spontaneous rotation, reflecting the characteristic kinematics during
compression. Thus, we conducted a hands-on validation of bistability to determine which
Kresling cells remained in the folded configuration after the manual force was applied. The
applied compressive force generated an axial displacement u of approximately one third of the

initial height A, of the Kresling cell.
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For example, we compared the behavior of Kresling cells with creases made of the rubbery
material DM60 generated with gradual reductions (C8 RF=0.80) versus its corresponding intact
creases cell, as shown in Fig. S.11A. We also observed the effects of viscosity in Kresling
cells (C8 RF=0.80) with creases made of different rubbery photo-polymers AG30, DM60,
DM70, DM85 and DM95, as illustrated in Fig. S.11B. In these hands-on experiments, we
confirmed that all Kresling cells with creases generated with RF=0.80 remained in the folded
configuration for over 180 seconds after the application of the manual compressive force,
thus validating the achieved bistability in the experiments conducted with the testing machine.
Conversely, the Kresling cells with creases made of the highly viscous DM95 or the intact cell
immediately returned to their original configuration, exhibiting a monostable behavior. The
complete hands-on experimental validation is further described in videos S2 and S4.

(A) (B)
t=0s t=0s

1
| E g
\ |
\ \

AG30 DM60 DM70 DM85 DM95

t>180s t>180s
* Bi aM

AG30 DM60 DM70 DM85 DM95

Int

Figure S.11: Hands-on experimental investigation demonstrating the achievement of bistability (Bi) in 3D-printed
multi-material Kresling cells of Case 8, by comparing their folding process. (A) RF=0.80 versus Intact creases cell (Int).
(B) Different RF=0.80 cells with creases made of rubbery photopolymers: AG30, DM60, DM70, DMS85, and DM95. *Note:
The Kresling cells were fabricated with an initial height h,=52.5 mm, and rigid panels made of VB. The applied force aimed
to achieve an axial displacement u~1/3h,.

S.1.10 Microscopic characterization of 3D printed creases results

The dimensional accuracy of the printing process affects the real dimensions of the 3D
printed Kresling cells. The measurements of the peaks and valleys creases from the case
C8, with gradual reductions between 0.25 < RF < 0.80, were analyzed. We established a
comparison between those obtained in reality after the Polyjet process and the corresponding
exact measurements in the CAD models. A transversal section passing through the half of the

Kresling cell was considered to design the sample for the characterization of the geometry of
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both types of creases, peaks and valleys. This sample replicates the intermediate substrates of

the 3D printed Kresling cell.

The real dimensions of 3D printed samples were determined via a stereo microscope (Nikon
SMZ800) equipped with an ED Plan 1.5x lens and with a DS-Ri2 camera. The mean values and
the corresponding standard deviations (SD) were obtained from three real measurements (n=3)
of the geometrical parameters characterizing the creases, as illustrated in Fig. S.12 and Fig. S.13
for both creases, peaks and valleys. We determined the corresponding mean percentage error,
Mpg (%) between the dimensions from printed samples (Real) and those used from the CAD

models, as follows:

100 ~ [ Mcap — Mgeq
Mpe(%) = — Z( - l’* l) 27)
Rea

n=1

The obtained real and exact measurements of the analyzed creases, with the respective
Mpg (%) error are described in Fig. S.14, in Fig. S.15, Fig. S.16 and Fig. S.17, including
peaks and valleys. The measurements taken along the multi-material interface between the
rigid and the rubbery photopolymer show differences with an error between 2 < Mpg (%) < 8.
The transition zone where the two materials are merging is not homogeneous. For this reason,
the dimensions along the edges of the 3D printed creases were not easily measured, potentially
leading to an error. Since the internal thickness s; is a crucial parameter for generating gradual
reductions along the creases, we have selected this control parameter to evaluate the impact
of differences between the exact and real measurements on the resulting experimental load
paths and compare them to the numerical results. Subsequently, an updated CAD model of
Kresling cells may be created by adjusting the internal thickness s; according to the mean real

measurements of the analyzed 3D printed creases.

Furthermore, we also observed that when the exact dimensions were designed less than
1.20 mm, the obtained real dimensions in the 3D printing process led to greater values exhibiting
a negative error -1 < Mpg (%) < -25. Specifically, in the cases related to creases with smaller
internal thickness s; generated with the reduction factors ranging within 0.57 < RF < 0.80. In
contrast, a positive Mpg error is achieved when the exact dimensions from the CAD files are
above 1.20 mm, such as the cases with reduction factors between 0.25 < RF < 0.50. It means
that the resulting creases exhibited smaller real dimensions. This fact can be attributed to the
printing limitation of fabricating defective load bearing elements with cross-sections around
1 mm, besides the characteristic dimensional accuracy of Polyjet J750 printers. In the case

of printing with High-Mix mode, where the layer height reaches 13-16 microns, the exhibited
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dimensional accuracy ranges within +0.06-0.1% for part lengths under ~100 mm [9], even

grasping values around +0.10 mm in real applications.
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Figure S.12: Microscope characterization of 3D printed creases. (A) Intermediate transversal section of the 3D printed
Kresling cells from case C8 with gradual reduction factors ranging between 0.57 < RF < 0.80 (scale 3:1). Comparison between
the real (3DP) and the exact (CAD) measurements of the corresponding: (B) Peaks and (C) Valleys. Units: microns. Scale

bar:1 mm.
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Figure S.13: Microscope characterization of 3D printed creases. (A) Intermediate transversal section of the 3D printed
Kresling cells from case C8 with gradual reduction factors ranging between 0.25 < RF < 0.50 (scale 3:1). Comparison between
the real (3DP) and the exact (CAD) measurements of the corresponding: (B) Peaks and (C) Valleys. Units: microns. Scale

bar:1 mm.
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Valleys

Geometrical Parameters RF=0.80

Peaks measurements

Meas; r'e

.
Iap

Sip

Sip

O2p

Sparp

Opazp

arcp

lp

lyp

REAL 1 1805.42
2 2049.90

3 1797.31

Mean 1884.21

SD 143.55

1977.77
2123.95
1897.40
1999.71

114.86

786.63
743.41
734.76
754.93

27.79

2336.39
2567.10
2350.34
2417.94

129.36

2323.52
2559.89
2249.66
2377.69

162.05

1842.47
1840.53
1856.68
1846.56

8.82

1701.28
1753.66
1751.66
1735.53

29.68

3843.36
3947.92
3913.40
3901.56

53.28

421.35
335.62
549.37
435.45
107.57

487.45
347.94
538.36
457.92

98.59

CAD 1 2173.78
Mee (%)  13.32

2173.14
7.98

710.08
-6.32

2512.84
3.78

2508.53
5.22

1815.27
-1.72

1732.96
-0.15

3773.05
-3.41

368.96
-18.02

373.54
-22.59

Valleys measurements

Measy r'yv

L ]
Nav

Siv

61.V

Sov

Spaty

Opazy

arc,

liy

lov

REAL 1 2095.18
2 2079.31

3 2393.20

Mean 2189.23

SD 176.82

1666.30
1987.27
2258.65
1970.74

296.52

639.68
639.68
5563.23
610.86

49.91

1868.19
1893.64
1876.31
1879.38

13.00

1894.55
1732.67
1821.23
1816.15

81.06

1851.63
1909.83
1861.73
1874.40

31.10

1900.95
1733.86
1793.39
1809.40

84.69

3814.28
3800.96
3626.94
3747.39

104.53

792.53
727.67
986.39
835.53
134.61

656.45
638.99
889.77
728.40
140.02

CAD 1 245370
Mee (%)  10.78

2455.58
19.74

577.80
-5.72

1857.34
-1.19

1869.41
2.85

1815.27
-3.26

1732.61
-4.43

3653.10
-2.58

844.40
1.05

824.90
11.70

Geometrical Parameters RF=0.74

Peaks measurements

Meas, r'p

L ]
Fap

Sip

Sip

B

Spatp

Spazp

arcp

lp

lp

REAL 1 2044.80
2 1956.78

3 1843.65

Mean 1948.41

SD 100.84

1999.25
1980.91
1930.68
1970.28

35.50

829.85
829.85
899.85
853.18

40.41

2481.65
2453.26
2406.09
2447.00

38.17

2331.27
2460.88
2390.02
2394.06

64.90

1913.83
1864.04
1827.35
1868.41

43.41

1727.26
1748.99
1756.54
1744.26

15.20

3460.71
3423.04
3427.05
3436.93

20.69

448.72
610.22
609.43
556.12

93.01

518.83
702.65
707.45
642.98
107.54

CAD 1 217378
Mpe (%) 10.37

2173.14
9.33

843.42
-1.16

2512.84
2.62

2508.53
4.56

1815.27
-2.93

1732.96
-0.65

3494.55
1.65

502.29
-10.72

506.87
-26.85

Valleys measurements

Meas, r'yv

L ]
Fa2v

6i,V

61.V

62,V

6PA1,V

6PA2,V

arcy

I1,V

I2,V

REAL 1 2064.31
2 2457.63

3 2277.95

Mean 2266.63

SD 196.90

2149.35
2458.85
2257.50
2288.57

157.07

899.01
622.39
855.78
792.39
148.81

1870.29
1894.36
1962.17
1908.94

47.64

1712.57
1911.09
1809.93
1811.20

99.27

1885.14
1839.71
1856.07
1860.31

23.01

1682.04
1799.86
1739.69
1740.53

58.91

3703.44
3562.02
3725.26
3663.57

88.62

877.00
872.50
899.96
883.15

14.73

801.23
885.46
807.23
831.31

46.99

CAD 1 245370
Mee (%) 7.62

2455.58
6.80

674.91
-17.41

1857.34
-2.78

1869.41
3.1

1815.27
-2.48

1732.61
-0.46

3652.71
-0.30

958.31
7.84

940.19
11.58

Figure S.14: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.74 < RF < 0.80.
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error Mpg(%) with respect to
the exact (CAD) measurements. Units: microns.
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Valleys

Geometrical Parameters RF=0.66

Peaks measurements

Meas; r'e

Map

Sip

Sip

S,p

6PA1,P

6PA2,P

arcp

lp

bp

REAL 1 1925.05
2 1762.63

3 2076.20

Mean 1921.29

SD 156.82

1952.67
1897.89
2037.56
1962.71

70.37

1089.18
1097.82
976.80
1054.60
67.52

2355.76
2367.57
2358.92
2360.75

6.11

244113
2346.68
2403.50
2397.10

47.55

1882.14
1840.89
1846.38
1856.47

22.40

1701.58
1818.57
1773.73
1764.63

59.02

3306.21
3144.04
2918.37
3122.87

194.78

592.87
656.89
746.48
665.41

77.16

661.01
707.30
754.29
707.53

46.64

CAD 1 2173.78
Mee (%)  11.61

2173.14
9.68

843.42
-25.04

2512.84
6.05

2508.53
4.44

1815.27
-2.27

1732.96
-1.83

3494.55
10.64

502.29
-32.48

506.87
-39.59

Valleys measurements

Measy v

L ]
Iav

Siv

61.V

Sov

Spaty

Spazy

arcy

liy

lv

REAL 1 2276.31
2 2200.04

3 2299.29

Mean 2258.55

SD 51.95

2216.95
2255.46
2135.98
2202.80

60.98

812.56
924.94
726.12
821.21

99.69

1870.04
1816.62
1771.06
1819.24

49.54

1810.70
1842.53
1696.32
1783.18

76.89

1858.39
1738.40
1777.74
1791.51

61.17

1766.07
1790.08
1736.65
1764.27

26.76

3234.99
3205.89
3083.61
3174.83

80.33

987.65
914.09
1163.36
1021.70
128.08

735.99
880.13
1060.41
892.18
162.55

CAD 1 245370
Mee (%) 7.95

2455.58
10.29

791.14
-3.80

1857.33
2.05

1869.41
4.61

1815.27
1.31

1732.61
-1.83

3044.68
-4.27

1100.72
7.18

1084.35
17.72

Geometrical Parameters RF=0.57

Peaks measurements

Measy r'p

]
Maop

Sip

5ip

5,p

Spatp

Spazp

arcp

lip

e

REAL 1 1843.58
2 1951.89

3 2072.20

Mean 1955.89

SD 114.36

1878.57
2039.94
2191.38
2036.63

156.43

1262.07
1244.78
1236.13
1247.66

13.21

2383.19
2474.39
2409.32
2422.30

46.97

2311.19
2412.00
2481.15
2401.45

85.47

1788.05
1804.26
1818.14
1803.48

15.06

1730.54
1770.34
1762.74
1754.54

21.13

2845.25
2813.76
2531.63
2730.21

172.70

843.64
815.30
910.13
856.36

48.68

920.16
898.31
947.11
921.86

24.44

CAD 1 217378
Mee (%)  10.02

2173.14
6.28

1224.37
-1.90

2512.84
3.60

2508.53
4.27

1815.27
0.65

1732.96
-1.25

2697.78
-1.20

883.24
3.04

887.84
-3.83

Valleys measurements

Meas, r'yv

L ]
Fa2v

6i,V

61.V

62,V

6PA1 Vv

6PA2,V

arcy

I1,V

I2,V

REAL 1 2430.01
2 2266.27

3 2438.34

Mean 2378.21

SD 97.03

2413.36
2237.62
2431.34
2360.77

107.03

847.14
847.14
838.50
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Figure S.15: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.57 < RF < 0.66.
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error Mpg(%) with respect to
the exact (CAD) measurements. Units: microns.
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iy ol o p
/8 0
. N g
L S
1
Geometrical Parameters RF=0.50
Peaks measurements
Meas; r'ye e Sip Sip 5,p Spatp  Opazp arce lip Lp
REAL 1 1938.23 1904.66 1296.64 2318.11 2340.35 1784.59 1781.64 2361.64 987.28 1017.38
2 1975.79 2093.31 1297.49 2412.80 2448.53 1837.37 1773.89 247290 978.77 1082.89
3 2038.33 2035.59 1327.49 2436.15 2402.00 1904.94 1810.34 2531.46 942.40 1078.77
Mean 1984.12 2011.19 1307.21 2389.02 2396.96 1842.30 1788.62 2455.33 969.48 1059.68
SD 50.57 96.66 17.57 62.51 54.27 60.33 19.20 86.26 23.84 36.69
CAD 1 2173.78 2173.14 1434.00 2512.84 2508.53 1815.27 1732.95 2361.35 1043.96 1048.55
Mee (%) 8.72 7.45 8.84 493 4.45 -1.49 -3.21 -3.98 713 -1.06
Valleys measurements
Meas, r'y rsv Siv S,y O,y Opaty Spazy arcy liy Ly
REAL 1 2322.80 2075.29 985.45 1767.51 1769.52 1807.56 1783.69 2401.85 1563.69 1661.65
2 2324.10 2312.17 1100.89 1826.11 1806.05 1837.07 1812.26 2260.21 1538.72 1469.46
3 2152.60 2078.57 950.87 1866.78 1746.68 1827.55 1724.35 2407.22 1193.45 1197.10
Mean 2266.50 2155.34 1012.40 1820.13 1774.08 1824.06 1773.43 2356.43 1431.95 1442.74
SD 98.64 135.83 78.56 49.90 29.95 15.06 44.84 83.37 206.93 233.43
CAD 1 2453.70 2455.58 1058.19 1857.34 1869.41 1815.27 1732.61 2283.87 1421.29 1408.90
Mee (%) 7.63 12.23 4.33 2.00 5.10 -0.48 -2.36 -3.18 -0.75 -2.40
Geometrical Parameters RF=0.40
Peaks measurements
Meas, r'e r'sp Sip Sip O2p Opatp  Oppap arcp lip Lp
REAL 1 1825.07 1936.91 1547.33 2324.26 2263.44 1799.77 1714.02 2053.97 1205.87 1207.09
2 2018.29 2079.35 1538.68 2382.63 2377.57 1818.97 1730.74 2040.43 1236.40 1260.02
3 1992.82 1978.89 1555.97 2281.62 2336.26 1842.91 1790.18 1869.76 1337.59 1353.99
Mean 1945.39 1998.38 1547.33 2329.50 2325.76 1820.55 1744.98 1988.05 1259.95 1273.70
SD 104.98 73.19 8.65 50.71 57.79  21.61 40.03 102.67 68.95 74.40
CAD 1 2173.78 2173.14 1610.08 2512.84 2508.53 1815.27 1732.96 1889.97 1268.96 1273.56
Mee (%) 10.51 8.04 3.90 7.30 7.29 -0.29 -0.69 -5.19 0.71 -0.01
Valleys measurements
Meas, r'yv r'yy Siv Sy S,y Spaty Spazy arcy liy by
REAL 1 2408.36 2429.37 1296.64 1822.79 1793.45 1820.92 1740.57 2044.27 1532.16 1569.42
2 2276.83 2280.70 1262.07 1798.03 1792.89 1799.84 1740.85 1797.87 1433.65 1416.88
3 2267.32 2228.39 1322.58 1807.67 1799.34 1788.70 1746.69 1589.70 1479.77 1414.80
Mean 2317.50 2312.82 1293.76 1809.50 1795.23 1803.15 1742.70 1810.61 1481.86 1467.03
SD 78.83 104.27 30.36 12.48 3.57 16.36 3.46 22755 49.29 88.68
CAD 1 2453.70 2455.58 1214.91 1857.34 1869.41 1815.27 1732.61 1827.24 1613.72 1603.74
Mee (%) 5.55 5.81 -6.49 2.58 3.97 0.67 -0.58 0.91 8.17 8.52

Figure S.16: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.40 < RF <0.50.
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error Mpg(%) with respect to
the exact (CAD) measurements. Units: microns.
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Valleys

Geometrical Parameters RF=0.33

Peaks measurements

Meas, r'pe r'ap Sip Sip S2p Opatp  Opaze arce lip lp
REAL 1 2007.90 2155.04 1590.55 2333.07 2430.29 1859.66 1726.92 1846.22 1322.36 1490.03
2 2028.15 2180.96 1694.28 2323.11 2403.11 1828.61 1707.10 1693.91 1380.78 1442.26
3 2092.83 2118.11 1633.77 2312.08 2334.74 1848.64 1697.99 1580.72 1468.83 1542.94
Mean 2042.96 2151.37 1639.53 2322.75 2389.38 1845.64 1710.67 1706.95 1390.66 1491.74
SD 4436 3159 52.10 10.50 49.23 15.74 14.79 133.23 7373 50.36
CAD 1 2173.78 2173.14 1760.09 2512.84 2508.53 1815.27 1732.96 1575.47 1418.96 1423.56
Mepe (%) 6.02 1.00 6.85 7.56 4.75 -1.67 1.29 -8.35 1.99 -4.79
Valleys measurements
Meas, r'yy ryyv Siv Siv S,y Spaty Spazy arcy liv Ly
REAL 1 2342.48 2213.98 1495.46 1748.28 1824.03 1720.14 1731.25 1467.53 1701.94 1518.26
2 224591 2181.91 1538.68 1837.17 1711.47 1798.85 1711.47 1433.87 1951.36 1710.22
3 2350.44 2343.54 1495.46 1730.69 1711.92 1750.96 1664.61 1075.60 1941.09 1873.85
Mean 2312.94 2246.48 1509.87 1772.05 1749.14 1756.65 1702.44 1325.67 1864.80 1700.78
SD 58.19 85.58 2495 57.08 64.86 39.66 34.22 217.22 14113 177.98
CAD 1 2453.70 2455.58 1318.87 1857.34 1869.41 1815.27 1732.61 1522.77 1742.04 1733.69
Mee (%) 5.74 8.52 -14.48 4.59 6.43 3.23 1.74 12.94 -7.05 1.90
Geometrical Parameters RF=0.25
Peaks measurements
Meas, r'ye rsp Sip Sip 5,p Spa1p  Opaze arce lip Lp
REAL 1 2090.82 2177.36 1970.90 2370.55 2333.97 1846.06 1729.49 805.27 1798.33 1948.19
2 2136.14 2273.04 1823.94 2385.47 2560.47 1860.38 1773.35 1032.96 1676.56 1690.60
3 2012.82 2091.49 1875.81 2412.80 2424.35 1807.23 1716.87 1280.27 1580.28 1665.81
Mean 2079.93 2180.63 1890.22 2389.61 2439.60 1837.89 1739.90 1039.50 1685.06 1768.20
SD 62.38 90.82 7453 21.43 114.02 37.50 29.64 237.57 109.27 156.37
CAD 1 2173.78 2173.14 1947.58 2512.84 2508.53 1815.27 1732.96 1182.07 1606.46 1611.07
Mee (%) 4.32 -0.34 2.95 4.90 2.75 -1.25 -0.40 12.06 -4.89 -9.75
Valleys measurements
Meas, r'y rav Siv Siv Sy Spaty Spazy arcy iy Ly
REAL 1 2381.80 2225.93 1504.11 1817.79 1776.20 1804.06 1740.32 1346.03 1662.17 1605.54
2 224479 2173.83 1513.93 1691.98 1675.51 1732.54 1718.32 1351.15 1855.47 1924.44
3 2293.10 2291.09 1555.97 1758.96 1720.56 1808.49 1714.21 1307.83 1803.89 1740.83
Mean 2306.56 2230.28 1524.67 1756.24 1724.09 1781.70 1724.28 1335.00 1773.84 1756.94
SD 69.49 58.75 2755 62.95 5044 42.63 14.04 23.67 100.09 160.06
CAD 1 2453.70 2455.58 1449.74 1857.33 1869.41 1815.27 1732.61 1142.11 1902.48 1896.18
Mee (%) 6.00 9.17 -5.17 5.44 7.77 1.85 0.48 -16.89 6.76 7.34

Figure S.17: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.25 < RF <0.33
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error Mpg(%) with respect to
the exact (CAD) measurements. Units: microns.
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S.2 Supplementary Text

S.2.1 Intact Kresling cell 3D analysis

Based on the initial geometrical configuration that leads to bistability, we parametrically
designed the 3D Kresling cells, as further detailed in S.1.2. The analyzed group of intact cases
was conformed by Kresling cells with a variable width of the creases. This term is expressed
in terms of the width versus thickness ratio, denoted as w/s. Thus, the number of intact cases
analyzed ranged within (0.50< w/s < 2.00) with their respective notation: Int 1 to Int 11, as

shown in Fig. S.18A.

w
» e Bl
(Int) i1 s
Multi-Material Intact case 1 0.50 A
2 0.60
3 0.75 W
4 090 B A
: 5 107§ EIS
6 1.20 6
; 7 1.35
: 8 1.50 :—‘”—>
9 165 D gIs
10 1.80 T
""" 1 2.00

(€)

u (mm) u (mm)

Figure S.18: Kresling cells with intact creases analysis (A) Geometrical details of Intact creases cases, from Int 1 to Int 11,
defined in terms of the ratio w/s. Load paths within the ranges: (B) 0.50 < w/s < 2.00 and (C) 1.50 < w/s < 2.00.

The load paths obtained from the numerical simulations, depicted in Fig. S.18B, reveal that
despite the utilization of flexible creases, the intact cases did not achieved the theoretical
bistability as predicted by the preliminary five-parameters model assessment. Specifically, the
force values did not reached values below zero, preventing a second local minimum energy

state. We have observed that the intact cases with narrower creases (Int 1 to 4) ranging
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between (0.50< w/s <0.90), tended towards monostability and become highly stiff instead.
In contrast, the intact cases (Int 5 to 11) with wider width creases (1.07< w/s < 2.00), exhibited
a monostable behavior. Although using flexible creases facilitates the folding process, the
Kresling cell quickly reverts to its initial configuration once the axial load is applied, and second
stable state is still not achieved, as evidenced by the load paths in Fig. S.2C. This behavior can be
attributed to the restoring force related to the viscoelastic nature of photopolymers. Therefore,
these initial results indicate that utilizing elastomeric creases requires further design strategies

to potentially achieve a bistable configuration in practice.

S.2.2 Creases design: Complementary results

The parametric study of the Kresling cells with the creases design, results from the numerical
simulations in Abaqus/CAE Standard, shown in Fig. S.19. We assessed how the gradual
reductions creases affected the energy landscape and the transition form a bistable (Bi) to a
monostable (M) behavior. As narrower the internal thickness s;, the Kresling cell tends to
achieve bistability.

This is especially observed in wider creases with a ratio w/s > 1.20, with an internal thickness
s; and reduction factors between 0.66 < RF' < 0.80, taking values between 0.1 < s;/5 < 0.70.
It is evidenced in the load paths with their corresponding stored energy landscapes, U, from
Fig. S.20 to Fig. S.23. Moreover, the sequential experiments conducted on the Kresling cells
within the range potentially exhibiting bistability (0.66 < RF < 0.80) are presented in Fig. S.24.
The results reveal a loss of load capacity of approximately 50% due to the degradation of the
thin rubbery creases (RF=0.80). In contrast, thicker creases (RF=0.66) appeared more resistant,
losing around 30% of load capacity. The analyzed Kresling cell cases were designed according

to the geometrical parameters detailed in Fig. S.25 for a 1:1 scale.
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Figure S.19: Parametric study of the creases geometry. Geometrical parameters with their attained Rotational Stiffness (K),
that lead to monostability (M) or bistability (Bi). *Limit Bi’: boundary between (Bi) and (M) determined experimentally. *The
crease edge limit determines the range of reduction radius factors, RF, to maintain a Circular shape at the lower part of the
crease. Results from Kresling cells at 1:1 scale.

(A)
30p RF=0.50 ]
F=0.66
z20r RF=0.80 ]
[T
10F :
0 i i
0 0.5 1 15
u (mm)
Lc1
15 ' ' 1
RF=0.50
_ 1ol F=0.66
5
E RF=0.80
D
5 - -
0 1 1
0 0.5 1 15
u (mm)

Figure S.20:

)]

7
RF=0.40
RF=0.50
RF=0.66
0.5 1 1.5
u (mm)
1 C2 |
RF=0.40
RF=0.50
RF=0.66
RF=0.80
0.5 1 1.5
u (mm)

(€)

15

F(N)
[ee]

i C3 |
RF=0.33
RF=0.40
RF=0.50
RF=1.50 ]
RF=0.80
0.5 1 1.5
u (mm)
1c3 i
RF=0.33
RF=0.40 4
RF=0.50
RF=0.66
RF=0.80
1 1
0.5 1 1.5
u (mm)

Load paths and stored energy (U) landscapes variation according to the crease internal thickness (s;)

decrement based on the reduction factors RF. (A) C1 (w/s = 0.50), (B) C2 (w/s = 0.60) and (C) C3 (w/s = 0.75). The
corresponding curves were generated until the panels started to be in contact during the numerical simulations.
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Figure S.21: Load paths and stored energy (U) landscapes variation according to the reduction factors RF. (A) C4
(w/s =0.90), (B) C5 (w/s = 1.07), and (C) C6 (w/s = 1.20). The corresponding curves are presented in the following order
RF: 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80.
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Figure S.22: Load paths and stored energy (U) landscapes variation according to the reduction factors RF. (A) C7
(w/s = 1.35), (B) C8 (w/s = 1.50) and (C) C9 (w/s = 1.65). The corresponding curves are presented in the following order
RF: 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80.
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Figure S.23: Load paths and stored energy (U) landscapes variation according to the reduction factors. (A) C10 (w/s =
1.80), and (B) C11 (w/s = 2.00). The corresponding curves are presented in the following order RF: 0.80, 0.74, 0.66, 0.57,

0.50, 0.40, 0.33, and 0.25.
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Figure S.24: Effect of the degradation of the rubbery crease cross- sections on the load path after performing sequential
experiments on the same samples. (A) RF=0.80, (B) RF=0.74 and (C) RF=0.66. Kresling cells case C8 fabricated with

creases made of DM60, at 3:1 scale.
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Geometrical Parameters Geometrical Parameters

Case# wis s r RF S, S; sils Case# wis s r RF S, S; sils
1 0.50 1.71 1.00 0.80 0.80 1.31 0.77 8 1.50 0.85 1.50 0.80 1.20 0.25 0.30
0.66 0.66 1.38 0.81 0.74 1.1 0.30 0.35
0.50 0.50 1.46 0.85 0.66 0.99 0.35 0.41
2 0.60 1.43 1.00 0.80 0.80 1.03 0.72 0.57 0.86 0.42 0.50
0.66 0.66 1.10 0.77 0.50 0.75 0.48 0.56
0.50 0.50 1.18 0.82 0.40 0.60 0.55 0.65
0.40 0.40 1.23 0.86 0.33 0.50 0.60 0.71
3 0.75 1.14 1.00 0.80 0.80 0.74 0.65 0.25 0.38 0.67 0.78
0.66 0.66 0.81 0.71 9 1.65 0.85 1.65 0.80 1.32 0.19 0.23
0.50 0.50 0.89 0.78 0.74 1.22 0.24 0.28
0.40 0.40 0.94 0.83 0.66 1.09 0.30 0.35
0.33 0.33 0.98 0.85 0.57 0.94 0.38 0.45
0.25 0.25 1.02 0.89 0.50 0.83 0.44 0.52
4 0.90 1.14 1.20 0.80 0.96 0.66 0.58 0.40 0.66 0.52 0.61
0.74 0.89 0.70 0.61 0.33 0.54 0.58 0.68
0.66 0.79 0.74 0.65 0.25 0.41 0.65 0.76
0.57 0.68 0.80 0.70 10 1.80 0.85 1.80 0.80 1.44 0.13 0.15
0.50 0.60 0.84 0.74 0.74 1.33 0.18 0.22
0.40 0.48 0.90 0.79 0.66 1.19 0.25 0.30
0.33 0.40 0.94 0.82 0.57 1.03 0.34 0.40
0.25 0.30 0.99 0.87 0.50 0.90 0.40 0.47
5 1.07 0.86 1.08 0.80 0.86 0.43 0.50 0.40 0.72 0.49 0.58
0.74 0.80 0.46 0.53 0.33 0.59 0.55 0.65
0.66 0.71 0.50 0.58 0.25 0.45 0.63 0.74
0.57 0.61 0.55 0.64 1" 2.00 0.85 2.00 0.80 1.60 0.05 0.06
0.50 0.54 0.59 0.69 0.74 1.48 0.11 0.13
0.40 0.43 0.64 0.75 0.66 1.32 0.18 0.22
0.33 0.35 0.68 0.79 0.57 1.14 0.28 0.33
0.25 0.27 0.72 0.84 0.50 1.00 0.35 0.41
6 1.20 0.86 1.20 0.80 0.96 0.38 0.44 0.40 0.80 0.45 0.53
0.74 0.89 0.41 0.48 0.33 0.66 0.52 0.61
0.66 0.79 0.46 0.53 0.25 0.50 0.60 0.70
0.57 0.69 0.51 0.60
0.50 0.60 0.56 0.65 V+Circular w

040 048 062 072 -
033 040 066 077 crease design
025 030 071 082 s
7 135 085 135 080 108 031 037
074 100 035 0.4
066 089 040 047
057 077 047 055 . R
050 068 052  0.61 Crease cutting | ) o ;
040 054 058 068 radius limit /. /
033 045 063 074
025 034 069 080

Figure S.25: Geometrical Parameters of creases with gradual reductions. Dimensions taken from the top of the Kresling
cells. Units: mm, scale: 1:1.
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S.2.3 Estimation of Rotational Stiffness in Creases

Whether a rubbery material is considered for the design of the creases, large deformations are
expected to be developed. The V-shape+Circular cross-section of the creases can be simplified
into an equivalent rectangular strip that delimits the zone predominantly under bending. Its
dimensions are the width w and the internal thickness s;, where the latter varies according to
a reduction factor RF. Thereby, we assessed the effects of the decrement of cross-sections on
the rotational stiffness, K, of the designed creases. The angular rotation y, corresponding to
a given bending moment M applied on the equivalent section, can be estimated considering
the formulations of bending of a incompressible elastic Neo-Hookean block proposed by [10].
This method assumes that the deformed configuration of the block follows the shape of a planar
sector of a cylindrical tube with a thickness s, an initial angle ; and a radius 7, as shown in
Fig. S.26A. The last two terms define the cylindrical coordinates of the system, thus: 7e[r, 7, +
s¢] and Yef[—y;, Y], being the out of plane terms neglected. The term 7 can be calculated by
fulfilling the impressibility constraint, where the deformed section is equal to the initial area

defined by s; and w. Then, the following relation can be established:

w s Sy
= Y 28
YT 2us 2 (28)

Considering a Neo-Hookean response of the section, one of the principal stress components 7,

in cylindrical form is defined as:

Ty(r) =G, |-

2 2 2 25 2
W +%72—1]—G"( W Wil sy —2). (29)

&p?# w? 2 _4¢/?(7’f + 57)? w?

where, G, is the initial shear modulus and the thickness s, of the deformed configuration can

be obtained by the following expression:

W / 5?
= — /-1 1 +4y?L 30
K l//i‘/zJ " rWi w G0

The bending moment M, corresponding to the stress on the deformed configuration, is

calculated by the following integration in the interval [7¢, 7 + s¢]:

TFESf
M = f rTy(ndr 3D
Ty
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Using Eq.31, we calculated the bending moment M of the equivalent cross- sections, M,
obtained at a given rotational angle ranging within 0 < ¢ < x/2. The analytical results of the
creases from cases C8 (w/s = 1.50) and C11 (w/s = 2.00) were selected for validation against
numerical simulations in Abaqus/CAE-Standard, as indicated in Fig. S.26B and C, respectively.
The thicknesses of the equivalent rectangular blocks correspond to the variable internal
thickness s; generated by reduction factors ranging from 0.25 < RF < 0.80. Moreover, the
corresponding mesh was created using biquadratic hybrid elements (CPESRH). The equivalent
rectangular blocks were subjected to bending until reaching a rotational angle of ¥ = /2
allowing us to obtain the corresponding bending moment M. This demonstrated the close
alignment between the FEA calculations and the analytical formulation. Furthermore, the plots
from Fig. S.27 depict the bending moment values obtained in Eq.31 at a given rotational angle
0 <y < /2, applied to the equivalent cross-sections corresponding to crease cases C1 to C11,

along with their respective reduction factors RF, as well as the related intact crease cases.

(A) (B) (€)
w cs [c11 |
03— 0.03
| | x10°
‘ o AN
s — FEA
i S bl JRF=0.74 ,—
L F / _—
0.02 002 {ff ~— /RF=080 | .
T e o 05
w « £ € 8 s RF=0.25
sil ] }. z z
s | s |
y 0.01 0.01
Y (rad) Y (rad)

Figure S.26: Rotational stiffness calculation. (A) Bending of an incompressible rectangular block equivalent to the crease
cross-section. Comparison of analytical and FEA results for the bending moment, M, and angular rotation, ¥, in cases: (B)
C8 (w/s = 1.50) and (C) C11 (w/s = 2.00). *Note: Results are presented in the order reduction factors ranging from
0.25 < RF < 0.80, representing a variable s;

Then, the rotational stiffness was obtained using the expression: K= M/y. We observed
that rotational stiffness depends on the variation of internal thicknesses s;, their associated
reduction factors RF, and the width of the creases w. For instance, bistable creases with
thinner internal thicknesses, generated by reduction factors 0.66 < RF < 0.80 and ranges of
0.30 < 5;/5 <0.40 (C8) and 0.05 < s;/s < 0.21 (C11), achieved the highest angular rotation
value ¢ = /2 ~1.57 rad at lower bending moments. Consequently, they exhibited higher
flexibility and lower rotational stiffness than their thicker creases counterparts, which fall within

the ranges s;/s > 0.57 (C8) and s;/s > 0.37 (C11), as previously shown in Fig. S.19.
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Figure S.27: Bending Moment M versus Rotational angle y curves. Calculation obtained from the equivalent cross-sections
of the cases C1 (A) to C11 (K), and Intact cases from 1 to 11.
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S.2.4 Effects of creases viscosity on bistability: Complementary Results

The assessment of bistability in Kresling cells with creases made from different rubbery
materials is presented in Fig. S.28, which is constructed from the load paths and energy
landscapes illustrated in Figs. S.29-S.32, based on analyses of Kreling cells at 1:1 scale (x1).
We determined whether creases with varying viscosity and relaxation moduli can still achieve
bistability, as explored in the parametric study in section 2.1. The numerical simulations were
conducted for a time duration corresponding to the limits of the initial (7}), short- (7), and
long-term (n7) relaxation regions to predict whether viscosity effects influence the achievement
of bistability at different time scales. Moreover, we conducted experiments on Kresling cells
(C8 RF=0.80, fabricated at a 3:1 scale) with creases made of AG30, DM60, DM70, DM8S5,
and DMO5, as shown in Fig. S.33. An average load capacity loss of approximately 50% was
observed due to degradation of the crease cross-sections, with lower peak load decrements in
softer photopolymers (AG30, DM60, and DM70) which have lower viscosity and relaxation

moduli.
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Figure S.28: Visco-hyperelastic effects on bistability. Parametric study assessing the achievement of bistability in creases
made of rubbery materials (AG30, DM60, DM70, DM85, and DM95) with varying visco-hyperelastic properties, characterized
by relaxation modulus G.,. Where Ggy = 0.220 MPa. The study focuses on Cases C8, C9, C10, and C11, designed with
reduction factors RF=0.80, RF=0.74 and RF=0.66.
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Figure S.29: Load paths and stored energy landscapes of case C8 RF=0.80. Creases: AG30, DM60, DM70, DM85 and
DMO5. Results for C8 RF=0.80 cells at a 1:1 scale (x1). Filled regions include FEA simulations within the range 7} < 7 < nr.
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Figure S.30: Load paths and energy landscapes of case C8 RF=0.66. Creases: AG30, DM60, DM70, DM85 and
DMO5 Results for C8 RF=0.66 cells at a 1:1 scale (x1). Filled regions include FEA simulations within the range 77 < 7 < nr.
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Figure S.31: Load paths and energy landscapes of case C11 RF=0.80. Creases: AG30, DM60, DM70, DM85 and DM95.

Results for C11 RF=0.80 cells at a 1:1 scale (x1). Filled regions include FEA simulations within the range 7} < 7 < nr.
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Figure S.32: Load paths and energy landscapes of case C11 RF=0.66. Creases: AG30, DM60, DM70, DM85 and DM95.
Results for C11 RF=0.66 cells at a 1:1 scale (x1). Filled regions include FEA simulations within the range 7} < 7 <nr.
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Figure S.33: Effect of the degradation of the rubbery crease cross-sections on the load path. Experimental results after
performing three sequential tests on Kresling cells C8 RF=0.80 with creases made of: (A) AG30, (B) DM60, (C) DM70,
(D) DM85 and (E) DM95. Kresling cells fabricated at a 3:1 scale. Filled regions include FEA simulations within the
range 7; < 7 < nt. (F) Experimental relaxation curve. Times 7;, 7 and nr, respectively considered for the numerical analysis

of viscosity effects. Experiments were performed at a test speed which correspond to a relaxation time 7;=180s.

S41



S.2.5 Monomaterial Kresling cells: Complementary Results

The load paths and stored energy landscapes of the rubbery photopolymers DM60, DM70
and DM&S5 are shown in Fig. S.34. They exhibited monostability and complement the analyses

presented for monomaterial Kresling cells, as described in section 2.5.
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Figure S.34: Load paths and energy landscapes of Monomaterial Kresling cells. Cases with variable void inclusions along
the creases: (A) M-1 and (B) M-2. Results of Kresling cells at a 1:1 scale.
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S.3 Captions for Supplementary Videos

Caption for Video S1. Experimental validation of the parametric study on crease
geometry of 3D printed Kresling cells. Comparison between Numerical (FEA) and
Experimental (Exp) load path results from compressive tests on the C8 case. Kresling cell
creases, generated with reduction factors RF = 0.80, 0.66, and 0.50, exhibited bistable or
monostable behavior.

Caption for Video S2. Hands-on Experimental validation of Bistability in 3D printed
Kresling cells. Evidence of bistable or monostable behavior in various Kresling cells with
creases made of DM60. The creases were generated with reduction factors in the range
of 0.25<RF<0.80 and an intact crease case (INT).

Caption for Video S3. Experimental validation of the crease degradation in 3D printed
Kresling cells. Effect of rubbery crease cross-section degradation on the load path, observed
after three sequential experiments on the same sample (C8, RF=0.80, creases made of DM60).

Caption for Video S4. Effects of viscosity on bistable Kresling cells: Hands-on
experimental validation. Evidence of bistable or monostable behavior in Kresling
cells  (C8,RF =0.80) with creases made of rubbery materials that have different
viscosity and relaxation modulus compared to DM60 (Gg=0.220 MPa):AG30 (G,=0.7Gg),
DM70 (Geo=1.4Ggp), DM85 (Goo=2.6Ggp), and DMOS5 (Goo=3.9Gg).

Caption for Video S5. Programmable Monostable Kresling Assemblies. Compression
test, folding process, and load paths from numerical (FEA) and experimental (EXP) analysis
for the following cases: (i) all creases made of DMG60, (i1) stiffer creases (DM95) in the even
layers, and (ii1) stiffer creases (DM95) in the odd layers. Numerical simulations stopped at the
first contact between panels.

Caption for Video S6. Prototyping of 3D printed Kresling cells via Polyjet technique.
Different stages of fabrication and post-processing for multi-material 3D-printed Kresling cells

using a Stratasys J750 printer within the PolyJet framework.
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