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Supporting Information Text15

Here we present all the details of the concepts presented in the main text. The presentation is detailed to make sure that all16

the results are reproduceable or generalizable, e.g. generalization of frustration mechanisms with linear springs to those with17

nonlinear springs.18

1. Details of Theoretical Formulation19

The total elastic energy expression for the geometrically frustrated Kresling origami cell, Ufru(u, φ), includes two parts. The20

first part is the energy from the spring mechanism, Uspr(u, φ), which introduces frustration by prestressing. The second part is21

the energy of the standard Kresling origami cell, U(u, φ). Therefore, we have:22

Ufru(u, φ) = Uspr(u, φ) + U(u, φ) [1]23

where two independent variables, u and φ, represent the axial displacement (change in the cell height) and the twist angle24

(relative rotation between the top and bottom faces of the cell). These variables describe the folding and unfolding process,25

as shown in Fig. S1. In the following paragraphs, we present the detailed formulation of the standard Kresling cell and four26

different frustrated mechanism systems.27
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Fig. S1. Illustration of the parameters in the standard Kresling origami cell. Schematics of the (A) deployed and (B) folded configurations with geometric parameters and
vertices description. The first row shows the top view, and the second row shows a perspective view. The elastic energy is described by the five-term model (b, c, δa, δb, δc) of
Ref. (1). Figure reproduced from Ref. (1).

Standard Kresling cell. The geometry of the standard n-gon Kresling cell is defined by three intrinsic parameters: r, hfolded,28

and θ0. Here, r is the radius of the circumscribed circle of polygon, hfolded is the height of the cell in the folded state, and29

θ0 is the initial relative angle between the top and bottom polygons in the deployed state. Figure S1 shows the geometric30

parameters of Kresling cell. We define a as the length of the crease between the top/bottom polygon and the side panels.31

The parameters b and c are the length of mountain and valley creases connecting two adjacent side panels, respectively. The32
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dihedral angle between the top/bottom polygon and the side panels is denoted by δa. The angles δb and δc represent the33

dihedral angles between adjacent side panels along the mountain and valley creases, respectively. The subscript ‘0’ refers to the34

initial configuration, i.e., deployed state. The expressions of these geometric parameters (see Fig. S1) are given as follows (1):35

a0 = a = 2r sin (π/n); [2]36

37

b0 =
√

h2
0 + 4r2 sin2 (θ0/2), b(u, φ) =

√
(h0 − u)2 + 4r2 sin2 (φ/2 + θ0/2); [3]38

39

c0 =
√

h2
0 + 4r2 sin2 (θ0/2 + π/n), c(u, φ) =

√
(h0 − u)2 + 4r2 sin2 (φ/2 + θ0/2 + π/n); [4]40

41

δa0 = arctan h0

2r sin (θ0/2 + π/n) sin(θ0/2) , δa(u, φ) = arctan (h0 − u)
2r sin (φ/2 + θ0/2 + π/n) sin(φ/2 + θ0/2) ; [5]42

43

δb0 = π − arccos h2
0 cos (θ0 + 2π/n) − r2[cos (θ0 + π/n) − cos (π/n)]2

h2
0 + r2[cos (θ0 + π/n) − cos (π/n)]2 ,

δb(u, φ) = π − arccos (h0 − u)2 cos (φ + θ0 + 2π/n) − r2[cos (φ + θ0 + π/n) − cos (π/n)]2
(h0 − u)2 + r2[cos (φ + θ0 + π/n) − cos (π/n)]2 ;

[6]44

45

δc0 = π − arccos h2
0 cos θ0 − r2[cos (θ0 + π/n) − cos (π/n)]2

h2
0 + r2[cos (θ0 + π/n) − cos (π/n)]2 ,

δc(u, φ) = π − arccos (h0 − u)2 cos (φ + θ0) − r2[cos (φ + θ0 + π/n) − cos (π/n)]2
(h0 − u)2 + r2[cos (φ + θ0 + π/n) − cos (π/n)]2 .

[7]46

We assume that the creases connected to the top and bottom polygons cannot deform, so a0 = a, as they are constrained by47

stiffer top/bottom plates (they do not deform) . Then, the elastic energy of the Kresling cell is expressed by the five-term48

expression as (1):49

U(u, φ) = 1
2nbks,b(b(u, φ) − b0)2 + 1

2ncks,c(c(u, φ) − c0)2

+ 1
2nakr,a(δa(u, φ) − δa0)2 + 1

2nbkr,b(δb(u, φ) − δb0)2 + 1
2nckr,c(δc(u, φ) − δc0)2. [8]

50

Here, na, nb, and nc are the numbers of edge, mountain and valley creases, respectively; ks,b and ks,b are the stretching51

stiffnesses of the mountain and valley creases; and kr,a, kr,b and kr,c the rotational stiffnesses of the edge, mountain, and valley52

creases, respectively. Table S1 lists the representative values of the parameters used in the theoretical analysis. The stiffness53

parameters are taken from Ref. (1).54

Table S1. Geometrical and mechanical parameters of Kresling origami cell.

Parameter Value

r (mm) 30
h0 (mm) 46.95
θ0 (deg) 15

na 12
nb 6
nc 6

ks,b (N/mm) 0.32
ks,c (N/mm) 3.18

kr,a (N·mm/rad) 0.16
kr,b (N·mm/rad) 0.26
kr,c (N·mm/rad) 0.32

Global stretch model. The global stretch model is created by adding a prestressed spring along the central axis of the standard55

origami cell. To describe the mechanical behavior of the frustrated Kresling cell, we use the following expression for the spring56

energy term:57

Uspr(u, φ) = 1
2ks,e(∆ℓe − u)2, [9]58
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where ks,e stiffness of the spring element and ∆ℓe the stretching length. By substituting Eqs. 8 and 9 into Eq. 1, we obtain the59

following expression for the total elastic energy of the global stretch model:60

Ufru(u, φ) = 1
2ks,e(∆ℓe − u)2 + 1

2nbks,b(b(u, φ) − b0)2 + 1
2ncks,c(c(u, φ) − c0)2

61

+ 1
2nakr,a(δa(u, φ) − δa0)2 + 1

2nbkr,b(δb(u, φ) − δb0)2 + 1
2nckr,c(δc(u, φ) − δc0)2. [10]62

Since the folding of the Kresling cell can be activated by either an axial force F or a torque T , the work done by these external63

loads is given by:64

W (u, φ) =
∫

F du +
∫

T dφ. [11]65

Then, the total potential energy of the frustrated cell, Π(u, φ), can be expressed as:66

Π(u, φ) = Ufru(u, φ) − W (u, φ). [12]67

Considering that Π(u, φ) is a function of two independent variables, u and φ, the equilibrium condition is obtained from the68

principle of minimum total potential energy:69

∂Π
∂u

= 0,
∂Π
∂φ

= 0. [13]70

Equation 13 gives the condition for free-rotation and free-translation, which are expressed as:71

∂Ufru(u, φ)
∂φ

= 0, [14]72

and73

∂Ufru(u, φ)
∂u

= 0. [15]74

respectively.75

The energy formulation in Eq. 9, shows that, for a given stiffness ks,e, the energy contribution from the prestressed spring76

can be tuned by adjusting ∆ℓe. We refer to cases with negative ∆ℓe/um ratios as negative prestressing modes. In these cases,77

the spring remains contracted during the folding of the origami cell. The energy Ufru(u, φ) of the frustrated Kresling cell in78

the negative mode is calculated using Eq. 10. In contrast, positive prestressing modes correspond to positive ∆ℓe/um ratios.79

Here, the spring tends to return to its original length as the cell folds, meaning that (ℓe − u) approaches zero. Based on the80

relationship between ∆ℓe and u, we define the following expression for the energy of the positive global stretch model:81

Ufru(u, φ) =

{
Uspr(u, φ) + U(u, φ), u ≤ ∆ℓe,

U(u, φ), u > ∆ℓe.
[16]82

By substituting the loading conditions of free rotation (Eq. 14) or free-translation (Eq. 15) into the energy expressions (Eqs. 1083

and 16), we obtain a relationship between Ufru and u or φ, respectively. These relationships are illustrated in Fig. 2B.84

Moreover, we observe that the curves, Ufru versus u, and Ufru versus φ, in Fig. 2B exhibit three stationary points. These85

points are determined by solving the two conditions in Eqs. 14 and 15. The stationary points, (uI, φI), (ũ, φ̃), and (uII, φII),86

correspond to the three energy quantities. They are base energy of the first stable state, U I
fru, the maximum energy between87

stable states, Umax, and the base energy of the second stable state, U II
fru, respectively. Thus, 6energy terms are given by:88

U I
fru = Ufru(uI, φI), Umax = Ufru(ũ, φ̃), U II

fru = Ufru(uII, φII). [17]89

Then, we define the energy barrier, ∆U , as:90

∆Ufru = Umax − U I
fru. [18]91

Table S2 (rows GS1-4) shows the energy terms of global stretch model along with the corresponding values of u and φ for92

different values of ∆ℓe and a given stiffness ks,e. Compared to the standard Kresling cell shown in row ‘O’, the base energy93

of the first stable state, U I
fru, is not zero in either the negative or positive prestress modes. However, the base energy of the94

second stable state, U II
fru, behaves differently depending on the mode. In the negative prestress mode, U II

fru always increases (see95

row ‘GS2’). As this energy increases, the frustrated Kresling cell changes from bistable to monostable (see rows ‘GS1+’ and96

‘GS2’). In the positive mode, the base energy of the second stable state either increases (row ‘GS4’) or stays the same (row97

‘GS3’) depending on the value of ∆ℓe. Additionally, the energy barrier, ∆Ufru, always decreases as ∆ℓe increases.98
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Table S2. Geometrical and mechanical parameters of frustrated models (global stretch, global rotation, and crease stretch) in Fig. 2.

Model ks,e (N/mm) ∆ℓe/um kr,e (N·mm/rad) ∆ηe/φm U I
fru (mJ) uI/um φI/φm U II

fru (mJ) uII/um φII/φm ∆Ufru (mJ)

O – – – – 0 0 0 11.249 0.862 0.971 31.317

GS1+ 0.03 -0.6 – – 11.583 -0.016 -0.026 n/a n/a n/a n/a
GS2 0.03 -0.3 – – 2.894 -0.008 -0.014 47.462 0.641 0.813 45.668
GS3 0.03 0.5 – – 8.018 0.016 0.026 11.249 0.862 0.971 23.850
GS4 0.03 1 – – 32.006 0.034 0.056 11.698 0.904 0.985 13.505

GR1+ – – 18 -1 21.038 -0.028 -0.051 n/a n/a n/a n/a
GR2 – – 18 -0.5 5.252 -0.015 -0.027 55.870 0.695 0.847 52.296
GR3 – – 18 0.6 7.531 0.020 0.036 11.249 0.862 0.971 23.787
GR4 – – 18 1.2 30.024 0.045 0.078 12.357 0.883 0.982 12.341

CS1 0.08 -0.12 – – 3.397 -0.017 -0.029 15.163 0.899 1.000 40.908
CS2 0.08 -0.06 – – 0.849 -0.009 -0.014 12.365 0.883 0.987 37.424
CS3 0.08 0.3 – – 21.240 0.049 0.075 31.171 0.768 0.892 20.071
CS4 0.08 0.6 – – 85.010 0.107 0.159 93.148 0.651 0.785 10.255

+In these models, the 2nd stable state is not available.

Substituting Eqs. 10 and 12 into Eq. 13, yields the expressions for the axial force, F , and torque, T , as follows:99

F (u, φ) = ∂Ufru(u, φ)
∂u

100

= −ks,e(∆ℓe − u) + nbks,b(b(u, φ) − b0)∂b(u, φ)
∂u

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂u

[19]101

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂u

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂u

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂u

,102

with loading conditions expressed by Eq. 14, and103

T (u, φ) = ∂Ufru(u, φ)
∂φ

104

= nbks,b(b(u, φ) − b0)∂b(u, φ)
∂φ

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂φ

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂φ

[20]105

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂φ

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂φ

,106

with loading conditions expressed by Eq. 15.107

Global rotation model. The global rotation model is obtained by adding a torsional spring whose center of rotation is located at108

the center of the standard origami cell. The energy associated with the prestressed spring, Uspr(u, φ), is expressed in terms of109

the spring stiffness kr,e and the rotation angle ∆ηe as follows:110

Uspr(u, φ) = 1
2kr,e(∆ηe − φ)2, [21]111

Substituting Eqs. 8 and 21 into Eq. 1, we can write the total elastic energy, Ufru(u, φ), of the global rotation frustrated cell as112

follows:113

Ufru(u, φ) = 1
2kr,e(∆ηe − φ)2 + 1

2nbks,b(b(u, φ) − b0)2 + 1
2ncks,c(c(u, φ) − c0)2

114

+ 1
2nakr,a(δa(u, φ) − δa0)2 + 1

2nbkr,b(δb(u, φ) − δb0)2 + 1
2nckr,c(δc(u, φ) − δc0)2. [22]115

Similar to the global stretch model, the energy expression for the global rotation model shows that, for a given stiffness116

kr,e, the energy terms can be tuned by varying ∆ηe. In the negative prestressing mode, where ∆ηe/φm is negative (with φm117

being the maximum twist angle), the spring remains deformed throughout the folding of the origami cell. As a result, the total118

elastic energy of the frustrated Kresling, Ufru(u, φ), is given by Eq. 22. In contrast, in the positive prestressing mode (positive119

∆ηe/φm) the spring tends to return to its original rotation angle during folding. In this case, the term (∆ηe − φ) approaches120

zero when the origami cell is folded. This behavior requires a modified energy expression based on the relationship between121

∆ηe and φ, as follows:122

Ufru(u, φ) =

{
Uspr(u, φ) + U(u, φ), φ ≤ ∆ηe,

U(u, φ), φ > ∆ηe.
[23]123
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The relationship between Ufru and u is evaluated using Eqs. 22 and 23 under the loading condition given in Eq. 14, while124

the relationship between Ufru and φ is obtained using the same equations with the loading condition in Eq. 15. The results125

corresponds to the curves shown in Fig. 2E.126

Table S2 (rows GR1-4) shows the energy terms of global rotation model along with the corresponding values of u and φ for127

different values of ∆ηe and a given stiffness kr,e. Compared to the standard Kresling cell shown in row ‘O’, the base energy128

of the first stable state, U I
fru, is not zero in either the negative or positive prestress modes. However, the base energy of the129

second stable state, U II
fru, behaves differently depending on the mode. In the negative prestress mode, U II

fru always increases (see130

row ‘GR2’), excluding the monostable model ‘GR1’. In the positive mode, the base energy of the second stable state either131

increases (row ‘GR4’) or stays the same (row ‘GR3’) depending on the value of ∆ηe. Additionally, the energy barrier, ∆Ufru,132

always decreases as ∆ηe increases.133

Based on the above energy formulations, the expressions for the axial force F and torque T are given as follows:134

F (u, φ) = ∂Ufru(u, φ)
∂u

135

= nbks,b(b(u, φ) − b0)∂b(u, φ)
∂u

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂u

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂u

[24]136

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂u

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂u

,137

with free-rotating loading condition, Eq. 14, and138

T (u, φ) = ∂Ufru(u, φ)
∂φ

139

= −kr,e(∆ηe − φ) + nbks,b(b(u, φ) − b0)∂b(u, φ)
∂φ

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂φ

[25]140

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂φ

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂φ

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂φ

,141

with free-translating loading condition, Eq. 15.142

Crease stretch model (local). This model assumes that prestressed springs introducing frustration into the Kresling cell are143

assumed to be aligned with the mountain (‘b’) and valley (‘c’) creases. The energy associated with the prestressed spring,144

Uspr(u, φ), is given by:145

Uspr(u, φ) = 1
2ne,bks,e,b(b(u, φ) − b0 + ∆ℓe,b)2 + 1

2ne,cks,e,c(c(u, φ) − c0 + ∆ℓe,c)2, [26]146

where ne,i, ks,e,i, and ∆ℓe,i (i = b and c) are the number, stiffness, and stretching length of the spring element along the147

mountain (‘b’) and valley (‘c’) creases, respectively. Based on Eq. 26, the total elastic energy Ufru(u, φ) of the crease (local)148

stretch model is expressed as follows:149

Ufru(u, φ) = 1
2ne,bks,e,b(b(u, φ) − b0 + ∆ℓe,b)2 + 1

2ne,cks,e,c(c(u, φ) − c0 + ∆ℓe,c)2 + 1
2nbks,b(b(u, φ) − b0)2

150

+ 1
2ncks,c(c(u, φ) − c0)2 + 1

2nakr,a(δa(u, φ) − δa0)2 + 1
2nbkr,b(δb(u, φ) − δb0)2 + 1

2nckr,c(δc(u, φ) − δc0)2. [27]151

Based on the above energy formulations, the expressions for the axial force F and torque T are given as follows:152

F (u, φ) = ∂Ufru(u, φ)
∂u

153

= ne,bks,e,b(b(u, φ) − b0 + ∆ℓe,b)∂b(u, φ)
∂u

+ ne,cks,e,c(c(u, φ) − c0 + ∆ℓe,c)∂c(u, φ)
∂u

154

+ nbks,b(b(u, φ) − b0)∂b(u, φ)
∂u

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂u

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂u

[28]155

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂u

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂u

,156
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with free-rotating loading condition, Eq. 14, and157

T (u, φ) = ∂Ufru(u, φ)
∂φ

158

= ne,bks,e,b(b(u, φ) − b0 + ∆ℓe,b)∂b(u, φ)
∂φ

+ ne,cks,e,c(c(u, φ) − c0 + ∆ℓe,c)∂c(u, φ)
∂φ

159

+ nbks,b(b(u, φ) − b0)∂b(u, φ)
∂φ

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂φ

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂φ

[29]160

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂φ

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂φ

.161

with free-translating loading condition, Eq. 15.162

For the sake of manufacturing simplicity, we simplify Eqs. 26-29 by setting ne,c = 0, ne,b = ne, ks,e,b = ks,e, and ∆ℓe,b = ∆ℓe.163

These assumptions correspond to the crease stretch model where the springs are aligned only along the mountain creases, as164

shown in the schematic and plots in Fig. 2G and H. The simplified expressions are given as follows:165

Uspr(u, φ) = 1
2neks,e(b(u, φ) − b0 + ∆ℓe)2, [30]166

167

Ufru(u, φ) = 1
2neks,e(b(u, φ) − b0 + ∆ℓe)2 + 1

2nbks,b(b(u, φ) − b0)2 + 1
2ncks,c(c(u, φ) − c0)2

168

+ 1
2nakr,a(δa(u, φ) − δa0)2 + 1

2nbkr,b(δb(u, φ) − δb0)2 + 1
2nckr,c(δc(u, φ) − δc0)2, [31]169

170

F (u, φ) = ∂Ufru(u, φ)
∂u

171

= neks,e(b(u, φ) − b0 + ∆ℓe,b)∂b(u, φ)
∂u

+ nbks,b(b(u, φ) − b0)∂b(u, φ)
∂u

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂u

[32]172

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂u

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂u

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂u

,173

and174

T (u, φ) = ∂Ufru(u, φ)
∂φ

175

= neks,e(b(u, φ) − b0 + ∆ℓe,b)∂b(u, φ)
∂φ

+ nbks,b(b(u, φ) − b0)∂b(u, φ)
∂φ

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂φ

[33]176

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂φ

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂φ

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂φ

.177

Equations 30 and 31 show that the energy terms can be tuned by varying ∆ℓe for a given stiffness ks,e. In the negative178

prestressing mode, the spring in the crease stretch model remains deformed as the origami cell folds, so the total elastic energy179

Ufru(u, φ), is given by Eq. 31. In contrast, in the positive prestressing mode, the spring returns to its original length during180

folding, causing the term (b(u, φ) − b0 + ∆ℓe,b) to approach zero. This behavior leads to a modified energy expression based on181

the relationship between ∆ℓe and |(b(u, φ) − b0)|, as follows:182

Ufru(u, φ) =

{
Uspr(u, φ) + U(u, φ), |b(u, φ) − b0| ≤ ∆ℓe,

U(u, φ), |b(u, φ) − b0| > ∆ℓe.
[34]183

We illustrate the relationship between Ufru and both u and φ, as obtained from Eqs. 31 and 34 in Fig. 2H. This analysis184

assumes ne = nb/2, and uses the loading conditions given in Eqs. 14 and 15.185

Table S2 (rows CS1-4) presents the energy terms of the crease (local) stretch model, along with the corresponding values of186

u and φ, calculated for various ∆ℓe and a fixed stiffness ks,e. Unlike the global prestressed models, the base energy of the two187

stable states, U I
fru and U II

fru increases in both negative (rows ‘CS1’ and ‘CS2’) and positive (rows ‘CS3’ and ‘CS4’) prestressing188

modes. On the other hand, the energy barrier, ∆Ufru, always decreases as ∆ℓe increases.189
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Crease rotation model (local). The crease (local) rotation model assumes that prestressed torsional springs, which introduce190

frustration into the Kresling cell, are inserted along the creases. The elastic energy Uspr(u, φ) associated with these springs is191

given by:192

Uspr(u, φ) =
∑

i=a, b, c

1
2ne,ikr,e,i(δi(u, φ) − δi0 + ∆ηe,i)2, [35]193

where ne,i, kr,e,i, and ∆ηe,i (i = a, b, and c) are the number, stiffness, and rotating angles of the spring element placed along194

the top/bottom (‘a’), mountain (‘b’) and valley (‘c’) creases, respectively. Based on Eq. 35, the total elastic energy Ufru(u, φ)195

for the crease rotation model can be written as:196

Ufru(u, φ) =
∑

i=a, b, c

1
2ne,ikr,e,i(δi(u, φ) − δi0 + ∆ηe,i)2 + 1

2nbks,b(b(u, φ) − b0)2 + 1
2ncks,c(c(u, φ) − c0)2

197

+ 1
2nakr,a(δa(u, φ) − δa0)2 + 1

2nbkr,b(δb(u, φ) − δb0)2 + 1
2nckr,c(δc(u, φ) − δc0)2. [36]198

As with the previously analyzed frustrating models, the expressions for axial force F and torque T are derived based on the199

principle of minimum total potential energy, as follows:200

F (u, φ) = ∂Ufru(u, φ)
∂u

201

=
∑

i=a, b, c

ne,ikr,e,i(δi(u, φ) − δi0 + ∆ηe,i)
∂δi(u, φ)

∂u
+ nbks,b(b(u, φ) − b0)∂b(u, φ)

∂u
[37]202

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂u

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂u

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂u

203

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂u

,204

and205

T (u, φ) = ∂Ufru(u, φ)
∂φ

206

=
∑

i=a, b, c

ne,ikr,e,i(δi(u, φ) − δi0 + ∆ηe,i)
∂δi(u, φ)

∂φ
+ nbks,b(b(u, φ) − b0)∂b(u, φ)

∂φ
[38]207

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂φ

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂φ

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂φ

208

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂φ

.209

Here, we perform a theoretical analysis of the crease (local) rotation model using the example shown in Fig. S2A, where the210

torsional springs are placed only along the top and bottom creases (‘a’). Under this assumption, ne = na, allowing Eqs. 35-38211

to be simplified as:212

Uspr(u, φ) = 1
2nekr,e(δa(u, φ) − δa0 + ∆ηe)2, [39]213

214

Ufru(u, φ) = 1
2nekr,e(δa(u, φ) − δa0 + ∆ηe)2 + 1

2nbks,b(b(u, φ) − b0)2 + 1
2ncks,c(c(u, φ) − c0)2

215

+ 1
2nakr,a(δa(u, φ) − δa0)2 + 1

2nbkr,b(δb(u, φ) − δb0)2 + 1
2nckr,c(δc(u, φ) − δc0)2, [40]216

217

F (u, φ) = ∂Ufru(u, φ)
∂u

218

= nekr,e(δa(u, φ) − δa0 + ∆ηe)∂δa(u, φ)
∂u

+ nbks,b(b(u, φ) − b0)∂b(u, φ)
∂u

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂u

[41]219

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂u

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂u

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂u

,220
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and221

T (u, φ) = ∂Ufru(u, φ)
∂φ

222

= nekr,e(δa(u, φ) − δa0 + ∆ηe)∂δa(u, φ)
∂φ

+ nbks,b(b(u, φ) − b0)∂b(u, φ)
∂φ

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂φ

[42]223

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂φ

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂φ

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂φ

.224
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Fig. S2. Theoretical model of crease (local) rotation frustrated cell. (A) Standard Kresling origami (top-middle) and two frustrated models (top-left and top-right). The left model
has six deformed torsional springs that increase the dihedral angles (negative prestress). The right model has six deformed torsional springs that decrease the dihedral angles
(positive prestress). Here, ∆ηe denotes the rotating angle of the torsional spring. The symbols δa0 and δa,fru denote the dihedral angles between the top/bottom polygon and
side panels in the standard and the frustrated models, respectively. (B) Reprogrammable energy landscapes. Top: intrinsic energy landscape (black curve) versus tunable
landscapes (green curves) with the negative prestress model. Bottom: intrinsic energy landscape (black curve) versus tunable landscapes (green curves) with the positive
prestress model. Left: the elastic energy U versus the normalized axial displacement u/um under axial loading with free-rotation. Right: the elastic energy U versus the
normalized twist angle φ/φm under torsional loading with free-translation. (C) Continuously tunable energy barrier with the global stretch feature. Normalized length changes
of the spring ∆ηe/φm versus the energy barrier ∆U , which is defined as the maximum energy of a frustrated model Umax minus the energy at the first stable state U I

fru.

Equations 39 and 40 demonstrate that the energy landscape of the crease rotation model can be tuned by varying ∆ηe for a225

given stiffness kr,e. In this model, a negative ∆ηe defines the negative prestressing mode, which corresponds to deploying the226

Kresling origami cell and increasing its dihedral angles. In this mode, the torsional spring remains deformed during folding,227

so the total elastic energy Ufru(u, φ) is given by Eq. 40. In contrast, the positive prestressing mode is defined by a positive228

∆ηe, which corresponds to folding the origami cell and decreasing the dihedral angles. In this case, as the cell folds, the229

spring returns to its original rotation angle, causing the term (δa(u, φ) − δa0 + ∆ηe) to approach zero. As a result, the energy230

expression is modified based on the relationship between ∆ηe and |δa(u, φ) − δa0|, as follows:231

Ufru(u, φ) =

{
Uspr(u, φ) + U(u, φ), |δa(u, φ) − δa0| ≤ ∆ηe,

U(u, φ), |δa(u, φ) − δa0| > ∆ηe.
[43]232

The relationship between Ufru and both u and φ, as obtained from Eqs. 40 and 43, are shown in Fig. S2B.233

Table S3 shows the energy terms of the crease (local) rotation model, with the corresponding u and φ calculated for various234

∆ηe values and a given stiffness kr,e. For the first stable state, the base energy UI
fru is non-zero in both negative and positive235

prestressing modes, unlike the standard Kresling cell shown in row ‘O’. However, the base energy of the second stable state,236

UII
fru, behaves differently depending on the prestressing mode. In the negative prestressing mode, this energy is not reported237

for model ‘CR1’ because the increasing energy causes the Kresling origami cell to switch from bistable to monostable. A238

comparison between models ‘O’ and ‘CR2’ further shows that UII
fru always increases in the negative mode. In the positive239

prestressing mode, the base energy at the second stable state can either increase (row ‘CR4’) or remain unchanged (row ‘CR3’),240

depending on the value of ∆ηe. Additionally, the last column of Table S3 shows that the energy barrier ∆Ufru consistently241

decreases as ∆ηe increases.242

2. Nonlinear Spring Model243

The formulations described above are based on a linear spring model, where ks,e or kr,e are constant. In this section, we extend244

the theoretical analysis of the four frustrated mechanism systems presented earlier by introducing nonlinear springs, and we245
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Table S3. Geometrical and mechanical parameters of frustrated model (crease rotation) in Fig. S2

Model kr,e (N·mm/rad) ∆ηe/φm U I
fru (mJ) uI/um φI/φm U II

fru (mJ) uII/um φII/φm ∆Ufru (mJ)

O – – 0 0 0 11.249 0.862 0.971 31.317

CR1+ 5 -0.5 9.061 -0.012 -0.021 n/a n/a n/a n/a
CR2 5 -0.25 2.263 -0.006 -0.011 50.315 0.660 0.827 48.762
CR3 5 0.5 9.026 0.015 0.026 11.249 0.862 0.971 22.292
CR4 5 1 35.995 0.035 0.060 11.977 0.902 0.985 10.270

+In this model, the 2nd stable state is not available.

present the general expressions for the nonlinear frustrated Kresling origami structure.246

Global stretch model (nonlinear). In this frustration model, the spring force–displacement relationship is defined as Pgs = Pgs(ℓe),247

where Pgs is the axial force and ℓe is the current length of the spring. The spring length is given by ℓe = ℓe,0 + x, where ℓe,0 is248

the rest length and x the spring deformation. When the nonlinear spring is incorporated into the global stretch model, the249

deformation is defined as x = ∆ℓe − u, with u being the axial displacement of the Kresling cell. As a result, the relationship250

between the spring axial force Pgs and the displacement u is expressed as:251

Pgs = Pgs(ℓe,0 + ∆ℓe − u). [44]252

Based on Eq. 44, the elastic energy of the spring, Uspr(u, φ), is given by (cf. Eq. 9 for the linear case):253

Uspr(u, φ) = sgn(∆ℓe − u)
∫ ∆ℓe−u

0
Pgs(ℓe,0 + x)dx. [45]254

By substituting Eqs. 45 and 8 into Eq. 1, the total elastic energy of the nonlinear global stretch model, Ufru(u, φ), is255

obtained as:256

Ufru(u, φ) = sgn(∆ℓe − u)
∫ ∆ℓe−u

0
Pgs(ℓe,0 + x)dx + 1

2nbks,b(b(u, φ) − b0)2 + 1
2ncks,c(c(u, φ) − c0)2

257

+ 1
2nakr,a(δa(u, φ) − δa0)2 + 1

2nbkr,b(δb(u, φ) − δb0)2 + 1
2nckr,c(δc(u, φ) − δc0)2 [46]258

which can be compared with the equivalent expression for frustration induced by a linear spring, Eq. 10.259

We derive the axial force and torque by substituting Eq. 46 into the expressions ∂Ufru(u, φ)/∂u and ∂Ufru(u, φ)/∂φ. The260

resulting expression for the axial force F (u, φ) is given as:261

F (u, φ) = ∂Ufru(u, φ)
∂u

262

= −sgn(∆ℓe − u)Pgs(ℓe,0 + ∆ℓe − u) + nbks,b(b(u, φ) − b0)∂b(u, φ)
∂u

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂u

[47]263

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂u

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂u

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂u

,264

while the torque, T (u, φ), is evaluated by Eq. 20.265

Here, we present an example of a nonlinear frustrated model that includes a conical spring placed inside the origami structure266

and aligned with its central axis (Fig. S3A). The nonlinear force–displacement behavior Pgs(ℓe) of the conical spring (2) is267

given by:268

Pgs(ℓe) =


KR(ℓe,0 − ℓe), ℓe ∈ [ℓe,T, ℓe,0],

(K1/2)3/2
{

1 −
[
1 − 2

[
1 −

(
1 + K2/(K2

1 )
)1/2

]]1/2
}3

, ℓe ∈ [ℓe,S, ℓe,T],
[48]269
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where270

KR = Gd4

2NA(D2
1 + D2

2)(D1 + D2) , K1 = K3 − K2

3K3
, K2 = −K6

K5
,271

K3 =

{
K4

16 +
[(

K4

16

)2
+

(
K2

3

)3
]1/2

}1/3

, K4 =
(

K7 − ℓe,0 + ℓe

K5

)2
, K5 = − 2D4

1NA

Gd4(D2 − D1) , [49]272

K6 = − 3
8(D2 − D1)

(
Gd4(ℓA − ℓS)4

NA

)1/3

, K7 = (ℓA − ℓS) D2

D2 − D1
, ℓe,A = ℓe,0 − Nid,273

ℓe,S =
{

max
[
0, (NAd)2 − 1

4 (D2 − D1)2
]}1/2

, ℓe,T = ℓe,0 − (ℓe,A − ℓe,S)(D2
1 + D2

2)(D1 + D2)
4D3

2
.274

Based on the design parameters (D1, D2, d, ℓe,0, Ni, NA, and G) listed in Table S4, we compare the linear and nonlinear global275

stretch models in Fig. S3B. The results show that the energy landscape is influenced by the nonlinear prestressed spring (orange276

dashed line), with the base energy of both stable states increasing. The main difference between the linear (blue line) and277

nonlinear models emerges near the second stable state, due to the variation in axial force Pgs at large stretching lengths ∆ℓe.278

B

A

0 0.5 1
0

U
 (m

J)

30

u/um

U
 (m

J)

0

30

φ/φm

0 0.5 1

60 60

conical spring

h0

le,0
le

Δle

hfru

u0

Δl  =0 e

conical spring linear spring
1   stable state (I)st 2    stable state (II)nd

standard Kresling

0

2

0 40 80

3

Δle

P
   

(N
)

gs

1

U/ φ = 0 U/ u = 0
C

Fig. S3. Frustrated model with nonlinear spring. (A) Global stretch model with a conical spring. Here, h0 denotes the height of the standard Kresling cell, hfru is the height of
the frustrated cell, and u0 is the height difference. (B) Reprogrammable energy landscapes achieved by conical and linear springs. Left: the elastic energy U versus the
normalized axial displacement u/um under axial loading with free-rotation. Right: the elastic energy U versus the normalized twist angle φ/φm under torsional loading with
free-translation. (C) Mechanical response of conical and linear springs Pgs versus deformed length ∆ℓe.

Table S4. Geometrical and mechanical parameters of the conical spring.

Parameter Value

D1 (mm) 9
D2 (mm) 15
d (mm) 1

ℓe,0 (mm) 75
Ni 1.5
NA 7

G (MPa) 2000

Global rotation model (nonlinear). In this frustration model, the spring torque–rotation relationship is defined as Tgr = Tgr(ηe),279

where Tgr is the torque and ηe is the current rotation of the spring. The spring rotation is given by ηe = ηe,0 + x, where ηe,0 is280

the rest angle and x the spring deformation. When the nonlinear spring is incorporated into the global rotation model, the281

deformation is defined as x = ∆ηe − φ, with φ being the rotation of the Kresling cell. As a result, the relationship between the282

torque Tgr and the rotation φ is expressed as:283

Tgr = Tgr(ηe,0 + ∆ηe − φ). [50]284
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Based on Eq. 50, the elastic energy of the nonlinear torsional spring is expressed as (cf. Eq. 21 for the linear case):285

Uspr(u, φ) = sgn(∆ηe − φ)
∫ ∆ηe−φ

0
Tgr(ηe,0 + x)dx. [51]286

By combining the energy expression of the nonlinear spring, Eq. 51, with that of the standard Kresling cell, Eq. 8, we obtain287

the total elastic energy of the nonlinear global rotation model as follows:288

Ufru(u, φ) = sgn(∆ηe − φ)
∫ ∆ηe−φ

0
Tgr(ηe,0 + x)dx + 1

2nbks,b(b(u, φ) − b0)2 + 1
2ncks,c(c(u, φ) − c0)2

289

+ 1
2nakr,a(δa(u, φ) − δa0)2 + 1

2nbkr,b(δb(u, φ) − δb0)2 + 1
2nckr,c(δc(u, φ) − δc0)2, [52]290

We derive the axial force and torque by substituting Eq. 52 into the expressions ∂Ufru(u, φ)/∂u and ∂Ufru(u, φ)/∂φ. The291

resulting expression for the axial force is given as:292

T (u, φ) = ∂Ufru(u, φ)
∂φ

293

= −sgn(∆ηe − φ)Tgr(ηe,0 + ∆ηe − φ) + nbks,b(b(u, φ) − b0)∂b(u, φ)
∂φ

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂φ

[53]294

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂φ

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂φ

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂φ

,295

which can be compared with the equivalent expression for frustration induced by a linear spring, Eq. 25. Notice that, in this296

case, the axial force is evaluated by the original Eq. 24297

Crease stretch model (nonlinear, local). In this frustration model, the spring force–displacement relationship is defined as298

Pcs = Pcs(ℓe), where Pcs is the axial force and ℓe is the current length of the spring. The spring length is given by ℓe = ℓe,0 + x,299

where ℓe,0 is the rest length and x is the spring deformation. When the nonlinear spring is placed along the mountain creases of300

the Kresling cell, the deformation is given by x = (b(u, φ) − b0 + ∆ℓe,b), where b(u, φ) is the current mountain crease length, b0301

is its initial value, and ∆ℓe,b is the prestretch. Similarly, when the spring is placed along the valley creases, the deformation is302

x = (c(u, φ) − c0 + ∆ℓe,c), where c(u, φ) is the current mountain crease length, c0 is its initial value, and ∆ℓe,c is the prestretch.303

As a result, the relationship between the axial force Pcs(ℓe) and the displacement u is expressed as:304

Pcs =

{
Pcs(b(u, φ) − b0 + ∆ℓe,b), for mountain creases,

Pcs(c(u, φ) − c0 + ∆ℓe,c), for valley creases.
[54]305

Thus, the elastic energy of the nonlinear spring is expressed as (cf. Eq. 26 for the linear case):306

Uspr(u, φ) = ne,bsgn(b(u, φ) − b0 + ∆ℓe,b)
∫ b(u,φ)−b0+∆ℓe,b

0
Pcs(ℓe,0 + x1)dx1

+ ne,csgn(c(u, φ) − c0 + ∆ℓe,c)
∫ c(u,φ)−c0+∆ℓe,c

0
Pcs(ℓe,0 + x2)dx2. [55]

307

The total elastic energy of the nonlinear crease stretch model, Ufru(u, φ), is given by the combination of the elastic energy308

stored in the nonlinear springs and the energy of the standard Kresling cell:309

Ufru(u, φ) = ne,bsgn(b(u, φ) − b0 + ∆ℓe,b)
∫ b(u,φ)−b0+∆ℓe,b

0
Pcs(ℓe,0 + x)dx310

+ ne,csgn(c(u, φ) − c0 + ∆ℓe,c)
∫ c(u,φ)−c0+∆ℓe,c

0
Pcs(ℓe,0 + x)dx + 1

2nbks,b(b(u, φ) − b0)2 [56]311

+ 1
2ncks,c(c(u, φ) − c0)2 + 1

2nakr,a(δa(u, φ) − δa0)2 + 1
2nbkr,b(δb(u, φ) − δb0)2 + 1

2nckr,c(δc(u, φ) − δc0)2,312
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We derive the axial force and torque by substituting Eq. 56 into the expressions ∂Ufru(u, φ)/∂u and ∂Ufru(u, φ)/∂φ. The313

resulting expression for the axial force is given as:314

F (u, φ) = ∂Ufru(u, φ)
∂u

315

= ne,bsgn(b(u, φ) − b0 + ∆ℓe,b)Pcs(ℓe,0 + b(u, φ) − b0 + ∆ℓe,b)∂b(u, φ)
∂u

316

+ ne,csgn(c(u, φ) − c0 + ∆ℓe,c)Pcs(ℓe,0 + c(u, φ) − c0 + ∆ℓe,c)∂c(u, φ)
∂u

317

+ nbks,b(b(u, φ) − b0)∂b(u, φ)
∂u

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂u

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂u

[57]318

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂u

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂u

,319

and for the torque is given as:320

T (u, φ) = ∂Ufru(u, φ)
∂φ

321

= ne,bsgn(b(u, φ) − b0 + ∆ℓe,b)Pcs(ℓe,0 + b(u, φ) − b0 + ∆ℓe,b)∂b(u, φ)
∂φ

322

+ ne,csgn(c(u, φ) − c0 + ∆ℓe,c)Pcs(ℓe,0 + c(u, φ) − c0 + ∆ℓe,c)∂c(u, φ)
∂φ

323

+ nbks,b(b(u, φ) − b0)∂b(u, φ)
∂φ

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂φ

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂φ

[58]324

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂φ

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂φ

.325

Crease rotation model (nonlinear, local). In this frustration model, the spring torque–rotation relationship is defined as326

Tcr = Tcr(ηe), where Tcr is the torque and ηe is the current rotation of the spring. The spring rotation is given by ηe = ηe,0 + x327

with ηe,0 being the rest angle and x the angular deformation. Since the torsional springs are inserted along the creases, the328

spring deformation x is given by x = (δi(u, φ) − δi0 + ∆ηe,i) where δi(u, φ) is the current dihedral angle, δi0 is the rest angle,329

∆ηe,i is the prestress, and i = a, b, or c corresponds to edge, mountain, and valley creases, respectively. Accordingly, the330

external load applied through the torsional springs is expressed as:331

Tcr = Tcr(δi(u, φ) − δi0 + ∆ηe,i), i = a, b, and c. [59]332

Thus, the elastic energy of the nonlinear spring is expressed as (cf. Eq. 35 for the linear case):333

Uspr(u, φ) =
∑

i=a, b, c

ne,isgn(δi(u, φ) − δi0 + ∆ηe,i)
∫ δi(u,φ)−δi0+∆ηe,i

0
Tcr(ηe,0 + x)dx. [60]334

The total elastic energy of the nonlinear crease rotation model is given by:335

Ufru(u, φ) =
∑

i=a, b, c

ne,i

∫ δi(u,φ)−δi0+∆ηe,i

0
Tcr(ηe,0 + x)dx + 1

2nbks,b(b(u, φ) − b0)2 + 1
2ncks,c(c(u, φ) − c0)2

336

+ 1
2nakr,a(δa(u, φ) − δa0)2 + 1

2nbkr,b(δb(u, φ) − δb0)2 + 1
2nckr,c(δc(u, φ) − δc0)2, [61]337

We derive the axial force and torque by substituting Eq. 61 into the expressions ∂Ufru(u, φ)/∂u and ∂Ufru(u, φ)/∂φ. The338

resulting expression for the axial force is given as:339

F (u, φ) = ∂Ufru(u, φ)
∂u

340

=
∑

i=a, b, c

ne,iTcr(ηe,0 + δi(u, φ) − δi0 + ∆ηe,i)
∂δi(u, φ)

∂u
+ nbks,b(b(u, φ) − b0)∂b(u, φ)

∂u
341

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂u

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂u

[62]342

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂u

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂u

,343
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and for the torque is given as:344

T (u, φ) = ∂Ufru(u, φ)
∂φ

345

=
∑

i=a, b, c

ne,iTcr(ηe,0 + δi(u, φ) − δi0 + ∆ηe,i)
∂δi(u, φ)

∂φ
+ nbks,b(b(u, φ) − b0)∂b(u, φ)

∂φ
346

+ ncks,c(c(u, φ) − c0)∂c(u, φ)
∂φ

+ nakr,a(δa(u, φ) − δa0)∂δa(u, φ)
∂φ

[63]347

+ nbkr,b(δb(u, φ) − δb0)∂δb(u, φ)
∂φ

+ nckr,c(δc(u, φ) − δc0)∂δc(u, φ)
∂φ

.348

3. Experimental Data and Error Analysis349

For the experimental results in Fig. 3, the black solid curve represents the mean response obtained from five independent tests350

conducted on standard Kresling samples. The colored solid curves (red, blue, and orange) represent the mean responses from351

three tests, each performed on a different frustrated Kresling sample with distinct prestress configurations. The mean values of352

displacement ui, rotation φi, force Fi, torque Ti, and energy Ui at the i-th loading step are computed as follows (3):353

ui =
∑nc

j=1 uj
i

nc
, φi =

∑nc
j=1 φj

i

nc
, Fi =

∑nc
j=1 F j

i

nc
, Ti =

∑nc
j=1 T j

i

nc
, Ui =

∑nc
j=1 U j

i

nc
, [64]354

where uj
i , φj

i , F j
i , T j

i , and U j
i are the displacement, rotation, force, torque, and energy values recorded from the j-th sample at355

the i-th loading step, and nc is the number of samples used for each configuration (nc = 5 for the standard Kresling cell and356

nc = 3 for the frustrated Kresling cell). The shaded regions around each curve represent the standard deviation of force σF,i,357

torque σT,i, and energy σU,i, across the nc Kresling samples. These standard deviations are calculated as follows:358

σF,i =

√∑nc
j=1 |F j

i − Fi|2

nc − 1 , σT,i =

√∑nc
j=1 |T j

i − Ti|2

nc − 1 , σU,i =

√∑nc
j=1 |U j

i − Ui|2

nc − 1 . [65]359

Additionally, since the initial displacement (or rotation) is not prescribed but rather estimated from the experimental360

measurements, the initial points of the curves include error bars in both the vertical and horizontal directions, as shown in361

Figs. 3B, D, and F. Specifically, the horizontal error bars represent the standard deviation of the displacement σu,i (or of the362

rotation σφ,i) at the initial loading step, i.e., i = 1. These standard deviations are calculated as follows:363

σu,1 =

√∑nc
j=1 |uj

1 − u1|2

nc − 1 , σφ,1 =

√∑nc
j=1 |φj

1 − φ1|2

nc − 1 . [66]364

4. Discussion on Differences between Theoretical Analyses and Experimental Results365

The differences between theoretical analyses and experimental results are present in all frustrated models in Fig. 3, which366

stem from three primary challenges. The first major challenge is panel buckling and bending during folding. As the Kresling367

structure deforms, panels can buckle in ways that are difficult to predict theoretically. Even advanced computational methods368

like finite element analysis struggle to capture this behavior accurately because buckling often occurs suddenly and can follow369

multiple possible deformation paths. The second challenge involves contact interactions between panels during folding. When370

different parts of the structure come into contact, they create complex friction forces and localized stress distributions. These371

interactions are highly sensitive to small variations in alignment, material properties, and surface conditions, making them372

exceptionally difficult to model with precision. The third and perhaps most significant challenge comes from manufacturing373

imperfections. While theoretical models assume perfect adhesion between rigid surfaces, real-world samples inevitably contain374

small gaps, uneven bonding, or minor misalignments. These imperfections can trigger unexpected buckling modes that diverge375

from theoretical predictions. Moreover, we observe from Fig. 3 that experimental results for global frustration mechanisms376

show better agreement with theory compared to crease (local) frustration cases. This difference occurs because crease (local)377

frustration is more sensitive to the imperfections and modeling challenges described above. Nevertheless, our results provide378

valuable insights into the mechanics of crease-frustrated cells, particularly in understanding how frustration modifies the energy379

landscape of the system.380

5. Experiment on Crease (Local) Stretch Model (Positive Mode)381

We develop a modular fabrication protocol to realize the local stretch model with positive prestress, incorporating spring382

elements, wire connectors, 3D-printed frames, and handles (Fig. S4A). The handle is used to control the level of prestress in the383

spring. The spring extension, ∆ℓ, depends on the handle radius rhandle and the number of interval turns n, and is defined as:384

∆ℓ = n(2πrhandle)/12. The prestressed spring deforms the standard Kresling cell into a new equilibrium configuration, which385
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has a non-zero base energy due to both the deformed origami cell and the spring. By tuning the prestress, the base energy of386

the initial stable states can be controlled, as shown in Fig. S4B (top-left). In compression experiments using a free-rotating387

fixture, we tested two different spring extensions and compared them with the standard Kresling cell. The results show that388

the shape of the energy landscape depends on the spring extension: greater extension leads to a higher energy barrier for the389

frustrated cell. This observation is consistent with the theoretical predictions shown in Fig. S4B (bottom-left).390
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6. Non-parallel Plates in Standard Kresling Assemblies391

In Movie S5, we observe that the 3D-printed plates between the cells of a standard Kresling assembly become non-parallel392

during the axially constrained twist experiment. To investigate this behavior, we compare the results from Movie S5 with those393

from an alternative folding path under the same loading conditions (Fig. 4), as well as with results obtained from an assembly394

constructed using newly fabricated cells. Fig. S5A shows the folding path from [0 1 0] to [1 0 0] for both the old and new395

specimens. In the old specimen, two discs become visibly non-parallel, whereas in the new specimen, only one disc exhibits this396

behavior, resulting in noticeable differences in the corresponding torque curves. This comparison suggests that fabrication397

errors are a contributing factor to the non-parallel behavior.398

Additionally, we compare the results in Fig. S5A with those in Fig. S5B. In the latter case, the red cells at the bottom399

remain deployed throughout the experiment, providing stable support for the yellow and blue cells above. Consequently,400

non-parallel deformation is less pronounced. In contrast, the red cell in Fig. S5A remains folded during testing. Because the401

folded configuration is less stiff than the deployed one, it cannot adequately support the upper cells, leading to more significant402

non-parallel deformation.403

7. Fixture Selection in Experiments of Assemblies404

Figure 4 shows that the folding and deploying processes of the Kresling assembly are activated by four boundary conditions,405

including rotationally constrained fixture, free-rotating fixture, axially constrained fixture, and free-translating fixture. The406

selection of the fixture is based on three conditions: the number of cells in the assembly, the geometric chirality of the Kresling407

cell, and the intrinsic coupling between axial displacement and rotation. Here, we propose three rules of choosing a fixture with408

illustrative examples in Fig. 4. Rule number one is that we use either free-rotating (folding path 6⃝ and 8⃝) or free-translating409

(folding path 2⃝ and 4⃝) fixtures to sequentially fold single cells in an array because these fixtures can decouple the axial410

displacement and twist of the single cell. Rule number two is that we use either rotationally constrained (folding path 1⃝ and411

7⃝) or axially constrained fixtures (folding path 3⃝ and 5⃝) to simultaneously fold two cells with opposite chirality in the array.412

Rule number three is that we use the free-translating fixture to fold a cell in a dipole (two cells with opposite chirality but same413

energy barrier) in the array (folding path 2⃝ and 4⃝). In summary, the complex, coupled kinematics of the Kresling structure414

makes the folding process highly sensitive to the end conditions. As such, precise control over the folding sequence (enabled by415

the correct fixture setup) is essential when using Kresling cells in applications that rely on predictable and programmable416

mechanical responses.417
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8. Energy Landscape of Kresling Arrays418

Figures S6 and S7 show the energy landscapes of the non-frustrated and frustrated Kresling arrays, respectively. The energy419

landscape of the non-frustrated arrays is computed using the following formulation:420

Uexp, F =
n∑

i=1

(uexp,i+1 − uexp,i−1)Fexp,i/2, Uexp, T =
n∑

i=1

(φexp,i+1 − φexp,i−1)Texp,i/2, [67]421

where Fexp,i, uexp,i, Texp,i, and φexp,i represent the experimental force, axial displacement, torque, and twist angle at the i-th422

loading step (with n loading steps in total), respectively. The energy of the frustrated arrays is given by:423

Uexp, F =
3∑

j=1

Ufru,j +
n∑

i=1

(uexp,i+1 − uexp,i−1)Fexp,i/2, Uexp, T =
3∑

j=1

Ufru,j +
n∑

i=1

(φexp,i+1 − φexp,i−1)Texp,i/2, [68]424

where Ufru,1, Ufru,2, and Ufru,3 denote the base energy at the first stable state for the blue, yellow, and red frustrated cells,425

respectively. The base energies of the cells in the frustrated Kresling array are defined as: Ufru,1 = Ufru,2 = 5.46 mJ and426

Ufru,3 = 15.61 mJ.427

9. Reprogramming Frustrated Kresling Assemblies428

To demonstrate the reprogrammability enabled by the frustrated Kresling assemblies, we consider an array composed of three429

frustrated cells, where the prestress level of the bottom cell is controlled via a torsional (global) spring (Fig. S8A). The markers430

on the handle indicate the applied prestress level. We conduct three experiments with varying prestress conditions in the431

bottom cell (Fig. S8B). Two distinct folding paths, labeled path 1⃝ and path 2⃝, are observed, as shown in Fig. S8B (top and432

middle). Interestingly, although path 2⃝ and path 3⃝ follow identical folding sequences (Fig. S8B - middle and bottom), their433

corresponding energy landscapes and torque–twist angle profiles differ significantly (Fig. S8C). These results confirm that both434

the folding path and energy barrier of multi-cell arrays can be actively reprogrammed by adjusting the prestress configuration.435
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10. Frustrated and Non-frustrated Curved-crease Origami436

Figure S9 shows the snapshots captured from the compression test of frustrated and non-frustrated curved-crease origami437

tubes, respectively. The two origami tubes have similar configurations at displacement u = 0mm and 0.48mm. However, the438

deformations of two origmai tubes at u = 2.5mm are quite different, which indicates different behaviors of frustrated and439

non-frustrated curved-crease origami tubes.440

11. Panel Buckling in Programmable Non-commutative States441

The experimental data of non-frustrated Kresling array in Fig. 6B (top) shows a jagged portion on the unloading curve under442

clockwise twist, see state i to state iii in Fig. S10 (left). This phenomenon is caused by the panel buckling and recovery443

observed in the yellow cell. The buckling deformation is referring to the valley creases popping out of the panels, as shown in444

the snapshots (Fig. S10, right). At state i, all six panels of the cell are buckled. At state ii, several panels recover while the445

others are still buckled. Finally, all panels recover at state iii.446

12. Materials and Methods447

Fabrication of Kresling origami cells. Both the standard and frustrated origami cells were fabricated using a multilayer material448

composed of Tant origami paper and 0.17 mm-thick adhesive tape (3M 9474LE). The blue and yellow cells consist of two layers449
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of origami paper and one intermediate adhesive layer, as shown in Fig. S11A. The red cell uses a stiffer configuration with three450

layers of origami paper and two layers of adhesive tape (Fig. S11C). All mountain creases were cut to facilitate folding. For the451

crease (local) stretch design, a trapezoidal hole was introduced into the panel (Fig. S11B) to prevent interference between the452

prestressed spring element and the origami structure.453

Fabrication of prestressed elements. The 3D-printed prestressed components were fabricated using a Stratasys J55 Prime454

PolyJet printer. For the global stretch model, the frames and handle were printed using VeroWhite material, while the markers455

were printed using VeroMagenta. In the global rotation model, the top frame and markers used the same materials as in456

the global stretch model, but the bottom frame and handle were printed with VeroUltraClear. For the crease (local) stretch457

model, the frames and markers were printed with the same materials used in the global stretch model. Additionally, the casing458

assembled on the top and bottom frames was printed using VeroYellow and VeroMagenta, respectively. The pulley used in the459

global rotation model is a ball bearing pulley (MiSUMi, SZV3-12). The extension spring used in the global stretch model has a460

stiffness of 0.3 N/mm (McMaster-Carr, 9065K566). The global rotation model uses an extension spring with a stiffness of 0.21461

N/mm (McMaster-Carr, 5108N036). In the crease (local) stretch model, the spring used in the negative mode is a compression462

spring with a stiffness of 0.46 N/mm (McMaster-Carr, 9657K641), while the spring used in the positive mode is an extension463

spring with a stiffness of 0.22 N/mm (McMaster-Carr, 1942N36)∗. The springs in both global models and the local stretch464

model (positive mode) are connected to the 3D-printed components using 0.3 mm diameter fishing wire.465

All prestressing systems mentioned in both main text and SI Appendix can be manufactured by standard 3D printers, which466

enhances the practicality of our concept. As an example, Fig. S12 shows the design of a 3D-printed frustrated Kresling cell467

∗More details can be found on https://www.mcmaster.com/products/springs/springs-2 /
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based on truss model, revealing that our approach can be practical for broader applications involving 3D printing.468

Experimental setups. The free-rotating and free-translating experimental setups are illustrated in Fig. S13. Both configurations469

consist of two fixtures that connect the top and bottom surfaces of the origami cell to the Instron loading frame (Model 68SC-5470

Single Column Testing System). The fixtures are attached to the origami cell using multiple miniaturized magnets. In both471

setups, the bottom fixture is identical and designed to restrain both rotational and axial motion, effectively eliminating any472

unintended rigid body displacement during testing. Axial load and torque are measured using a biaxial force/torque sensor473

(±445 N, ±5.65 Nm).474

In the free-rotating setup (Fig. S13A), the top fixture allows unrestricted rotation of the origami cell. This is enabled by475

incorporating a ball bearing (SKF 608, 8×22×7 mm) into the top plate, which permits the natural twisting of the frustrated476

Kresling structure during compression and tension. These tests are performed at a displacement rate of 0.25 mm/s.477

In the free-translating setup (Fig. S13B), the top fixture enables axial movement while allowing the structure to rotate478

freely. This is achieved using a linear rail system with two sliders that support a translating top plate, minimizing friction and479

preventing rigid coupling. A pulley system is added to counterbalance the weight of the translating plate, preventing it from480

imposing unwanted axial forces on the origami cell that could bias the measurement of bistability. Torsional experiments in481

this setup are conducted at a rotation rate of 0.5 deg/s.482
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Fig. S12. 3D-printed frustrated Kresling cell.

Shixi Zang, Tuo Zhao, Diego Misseroni, and Glaucio H. Paulino 23 of 25



A

counterweight

pulley

wire

sliders

top plate
(free translating)

slider
rails

bottom plate

magnet

Kresling

t 2t1t0

ϕ=0 ϕ=ϕ2
ϕ=ϕ1

(non-rotating)

B

ball bearing

bottom plate
(non-rotating)

magnet

Kresling

free rotating
plate

t2t1t0

u=u1
u=0

u=u2

Fig. S13. Details of the free-rotating and free-translating fixtures designed for conducting compression and torsional experiments, respectively. (A) Left: schematics of the
free-rotating fixture (reproduced from Ref. (1)). Right: snapshots extracted from the record of the experiment at different times illustrating the working principles of the setup.
Compression on the Kresling array is achieved by imposing the axial displacement u, indicated by white arrows, using a loading frame machine. The fixture enables free
rotation, facilitating the natural twisting of the Kresling, as indicated by the red arrows. (B) Left: schematics of the free-translating fixture (reproduced from Ref. (1)). Right:
snapshots extracted from the record of the experiment at different times illustrating the working principles of the setup. Twisting in the Kresling array is accomplished by applying
a rotation φ, as indicated by yellow arrows, using a loading frame machine. The fixture is connected to a linear slide system that enables unrestricted translation, allowing the
Kresling array to undergo axial folding without constraints, as indicated by the red arrows.
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Movie S1. Frustration483

Movie S2. Frustrated Apparatus - Global Stretch484

Movie S3. Frustrated Apparatus - Global Rotation485

Movie S4. Frustrated Apparatus - Crease Stretch486

Movie S5. Experiments with Non-frustrated Kresling Arrays487

Movie S6. Experiments with Frustrated Kresling Arrays488
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