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Harnessing instabilities of multicomponent multistable structural assemblies can potentially
lead to scalable and reversible functionalities, which can be enhanced by exploring frustration.
For instance, standard Kresling origami cells exhibit non-tunable intrinsic energy landscapes
determined by their geometry and material properties, limiting their adaptability after
fabrication. To overcome this limitation, we introduce frustration to enable fine-tuning of
the energy landscape and resulting deformation states. By prestressing the Kresling cell by
means of special springs with individual control, we induce either global or localized (i.e.,
crease level) frustration, which allows changing the energy barrier (cell or assembly). We
investigate the mechanical behavior of frustrated Kresling assemblies, both theoretically
and experimentally, under various loading and boundary conditions. Our findings reveal
that changing the frustration state leads to precise control of folding sequences, enabling
previously inaccessible folding paths. The proposed concept paves the way for innovative
applications in mechanical metamaterials and other fields requiring highly programmable and
reconfigurable systems.

Geometrical frustration | Origami | Kresling pattern | Energy landscape

R econfigurable assemblies consist of engineered macroscopic nonlinear structures
undergoing large deformations. The behavior of the assemblies depends
on the material properties and geometrical nonlinearity of the local unit cells.
Classic nonlinear cells, such as snap-through beams (1, 2), and buckling-driven
continuum elements(3, 4), have been explored in applications, including energy
absorption (5, 6), soft robotic actuators (7, 8), non-commutative response (9), wave
propagation (10), acoustic metamaterials (11, 12), and soft matter undergoing
dramatic shape changes (13, 14). More recently, origami-inspired geometry has
enriched the design space of the nonlinear unit cells such as Kresling (15-20), square-
twist (21, 22), Waterbomb (23, 24), and Miura-Ori variations (25-27), and curved
folds (28, 29). Furthermore, the non-rigid origami assemblies have enabled finite
deformation for applications involving shape morphing (30-32) and controllable
energy landscape (32-34). The aforementioned reconfigurable assemblies assume a
pre-defined deformation path; thus, the nonlinear properties, e.g., the shape of the
energy landscape and the instability behavior, are non-tunable after fabrication.
On the other hand, reprogrammable structures enable continuously variable elastic
modulus via changing the configurational state of local units (35), e.g., heights
of the elastic shells (36), rotation angles of the gears (37), and rolling motion of
the cams (38). A limited number of studies have applied this reprogrammability
concept for assemblies with tunable instability behaviors (39, 40), e.g., switch
between monostable and bistable responses. The switching behavior is achieved by
actuating two distinct topological states of a local unit. However, the limited local
states restrict the number of global deformation paths, which makes it difficult to
reprogram the energy barrier of the assembly continuously.

Here, we introduce geometrical frustration (41) into the origami-inspired
assemblies, together with novel experimental fixtures (e.g., free-rotating and free-
translating), to achieve continuous energy landscape reprogrammability. The
geometrical frustration is embedded within the origami cells by means of three
mechanisms: global stretch, global rotation, and crease (local) stretch (Fig. 1A).
Each mechanism integrates shell-based origami with special spring elements,
which introduce prestress into the frustrated origami cell. The prestress level
of the frustrated model is continuously adjustable by controlling the spring
properties, i.e., stretching/rotating direction and magnitude. The frustrated
assemblies, with tunable prestresses, enable one to engineer the energy landscape
of multiple stable states on the fly. We achieve unprecedented folding paths,
otherwise infeasible (Fig. 1B, Movie S1). This finding paves the way for potential
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Fig. 1. Standard and geometrically frustrated origami assemblies with tunable energy landscapes and folding paths. (A) Top: Schematic of the standard Kresling origami
(brown) and its intrinsic energy landscapes. The symbols uw and ¢ denote displacement and twist angle, respectively. Bottom: Schematics of the frustrated models (orange)

with three types of prestress: (i) global stretch, (i) global rotation, and (iii) crease stretch

(local) and their tunable energy landscapes. The symbols ¢. and 7. denote the length

of the axial spring and the rotating angle of the torsional spring, respectively. (B) Top: an infeasible folding path using the standard Kresling assembly. Here, AU; and AU»
denote the intrinsic energy barriers of the origami cells made of different materials. Bottom: frustrated assembly achieving an unprecedented folding deformation. Here, AUy

and Uspr denote the energy barrier of the frustrated model and the elastic energy stored
the free-translation fixture and experimental data of twist angle ¢ versus torque T'.

applications in reconfigurable mechanical metamaterials and
non-commutative state transitions.

Results

Theory of geometrical frustration. Starting from the theo-
retical modeling of the Kresling origami, which describes
its mechanics through an elastic energy dependent on two
independent variables, displacement u and twist angle ¢,
we develop an enhanced model for the frustrated system.
We write the total elastic energy of the frustrated model,
Utra(u, ), as follows:

Ufru(u7 80) = Uspr(ua 410) + U(“? 50)7 [1]

where U (u, ¢) is the elastic energy of the standard Kresling
cell (42), and Uspr(u, ¢) denotes the elastic energy stored
in the prestressed springs, which embed frustration into the
origami cell. The five-term elastic energy of the standard cell
is expressed as:

1
Ulu, ) = snpks s (b(u, ) — bo)*

2
1
+ incks,c(c(uv 90) - CO)2
1
+ inakr,a(5a(u7 90) - 50,0)2 [2]
1
+ inbkr,b((sb(u, @) — 60)?
1 2
+ §nckr,c(5c(u> SO) - 500) .

2 — www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

in the torsional spring element, respectively. Insets show the rotational test setup with

We offer a detailed explanation of the material parameters
ks (1 =band ¢) and k,; (1 = a, b, and ¢), the geometric
parameters b, ¢, 6; (i = a, b, and c¢), and the parameters
n; (i = a, b, and ¢) in the SI Appendix, section 1, Fig. S1,
and Table S1.

Using the principle of minimum total potential energy, the
equilibrium conditions for axial and torque loading can be
derived with Eq.1. Specifically, the axial force and torque
can be calculated as follows:

OUspr (u, ¢) + U (u, ¢)

Fin, ) = 20220 wo)
OV (1, oU (u,
Thea (0, ) = pafpu 2 g“; 2 4]

Here, the expression of Uspr(u, ) depends on the prestressed
spring mechanism of interest. We present three types
of frustrated models, i.e., global stretch, global rotation,
and crease stretch, in the following sessions (see details of
theoretical formulation in SI Appendix, section 1).

Global stretch. This model involves a single deformed spring
element inserted in the origami and aligned with its central
axis. In the theoretical analysis, the initial state of the
spring can be either extended or compressed, providing the
origami with tunable prestress properties. The extended
spring deforms the origami cell in the folding direction, while
the compressed spring stretches the unit in the deploying
direction. The prestressed spring is coupled with the origami

Zang etal.

211


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

249
250
251
252
253
254
255
256
257

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

cell to achieve a new equilibrium stage, denoted as the
frustrated mode. The resulting energy landscape of the
frustrated mode is programmable by adjusting the elastic
energy stored in the spring element, defined as follows:
1 2
Uspr(1,0) = hose (AL — u)?, 5]
where ks and Al are the stiffness and length change of the
spring element embedded in the frustrated Kresling cell.

Global rotation. This model takes advantage of the rotational
degree of freedom of the Kresling origami and embeds
torsional prestress into the unit cell. The prestress level
is controlled by a torsional spring integrated with the origami
cell. The spring rotates the undeformed cell and reaches a
new equilibrium state with prestresses. The spring enables
two types of prestresses, which are defined as positive and
negative. The positive prestress rotates the cell in the same
direction as its intrinsic twisting direction, while the negative
prestress rotates the unit in the opposite direction. The
elastic energy functional for the torsional springs is defined
as follows:

1
USPI‘(u7 SO) = ikr,e(Ane - 30)25 [6]

where k. and A, are the stiffness and rotating angle change
of the torsional spring integrated in the frustrated model.

Crease (local) stretch. This model embeds prestressed springs
along the mountain creases (local) of the origami cell to
frustrate the system. Those local spring elements deform
the unit into a new stable state with a non-zero base energy.
The magnitude of the base energy and energy barrier of the
frustrated model are tunable by controlling the elastic energy
stored in the springs, defined as follows:

Uspr(t,9) = ek c(b(u, ) — b+ ALY, [1]
where n. is the number of the stretching springs along the
mountain creases (n. = 3 in this paper), b(u, ¢) is the length
of the mountain crease, bo is the initial length of the mountain
crease at the undeformed state of the Kresling cell, and Al.
is the length change of the spring element.

Parametric study. The frustrated cells integrate three types of
prestressed models into the standard Kresling origami. Egs. 5-
7 show that the elastic energy stored in the prestressed springs
is controlled by its deformation. Thus, we can navigate
the energy landscape by varying the length change Al. and
rotating angle change An. of the spring elements, respectively
(Fig. 2). We refer to SI Appendix, Table S2 for the selection
of parameters. Recall that we denote the positive prestress
as deforming the origami cell in the folding direction, while
the negative prestress deforms the unit in the deploying
direction. Both positive and negative prestress drive the
undeformed origami into new equilibrium states with non-
zero base energy, and the corresponding energy landscapes are
tunable. For instance, the global stretch model enables two
frustrated modes: one with negative prestress and the other
one with positive prestress (Fig. 2A). Both modes have non-
zero base energy at the initial stable state; however, in the
negative mode, the energy at the second stable state always
increases, while for the positive mode, the base energy of
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the 2nd stable state can either increase or remain unchanged
depending on the given length change in the prestressed
spring. Note that the base energy of the 2nd stable state for
the positive mode is similar to the base energy of the standard
Kresling. This behavior is due to the frustrating setup used
in the positive mode, where the elongated spring becomes
invalid after returning to its original length. By contrast, the
springs are always compressed in the negative mode. Thus,
the resulting energy landscapes for the two modes, negative
and positive, can be quite different. This finding holds for
results obtained using two independent loading conditions:
compression with free-rotation (Fig. 2B-left) and torsion with
free-translation (Fig. 2B-right). Notably, by controlling the
level of prestress in the negative mode, we can switch the
instability behavior from bistable to monostable, as shown in
Fig. 2B (Top: two orange curves). Another unique feature is
the capability to continuously program the energy barrier of
the cell with frustration. Here, the energy barrier is defined as
the difference between the local maximum on the landscape
and the initial base energy. Fig. 2C shows the theoretical
energy barrier as a function of the stretching length of the
prestressed spring. Moreover, the curve shows a smooth
transition between the negative mode and the positive mode.
This result highlights the capability of the frustrated model
to achieve fine-tuned control over energy barriers.

Another frustration model we investigate is the global
rotation (Fig. 2D), which also has two modes similar to
the global stretch, i.e., negative mode and positive mode.
The negative mode integrates a prestressed torsional spring
rotating the origami opposite to the twisting direction of the
cell while it folds. The positive mode embeds a torsional
spring that rotates the origami along the same direction
while the cell folds. By controlling the prestress level of
the torsional springs, we can achieve non-zero bases for the
initial stable states of the cell. Further, the shape of the
energy landscape can be programmed as shown in Fig. 2E.
As a result, the global rotation-induced frustrated cell has
switchable instabilities, i.e., monostable or bistable behavior.
Notably, the energy barrier between the local maximum and
the initial base energycan be continuously tunable as shown
in Fig. 2F.

The last frustration model we investigate is the crease
stretch shown in Fig. 2G. The prestressed springs are
located along some mountain creases due to fabrication
considerations, as shown in the later experimental validation
sessions. The crease stretch has two prestressed modes, i.e.,
positive mode with elongated springs and negative mode
with compressed springs. The two prestressed modes enable
the frustrated cell with programmable energy landscapes
(Fig. 2H). The stored elastic energy is contributed by the
stretch of prestressed springs and the deformation of the
origami panels and creases. The mountain creases of the
Kresling cell shortens when folding is initiated, but the creases
return to the initial length at the folded stable state. On
the other hand, the deformation of the prestressed springs
behaves differently under the two modes. For the negative
mode, the prestressed spring has similar kinematics to the
mountain crease. The compressed spring is further shortened
while the cell is folding. Then, the spring returns to its initial
compressed length at the folded stable state. For the positive
mode, the spring is elongated at the initial stable state. As
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the cell folding initiates, the amount of elongation reduces.
At the folded stable state, the spring returns to its initial
elongated state. We can see that the deformation history of
the prestressed spring in the positive mode and negative mode
is quite different. As a result, the two modes lead to distinct
shapes of the energy landscape. This observation enriches
the programmability of the frustrated cells by means of local
crease control. Moreover, we present an additional local
frustrated model, i.e., crease rotation, in the SI Appendix,
section 1, Fig. S2, and Table S3.

The aforementioned theoretical analysis considers linear
spring mechanisms with constant stiffnesses, i.e., ks =
constant and k,. = constant. However, the theoretical
framework (Egs. 5-7) can be generalized to incorporate
nonlinear springs in the frustrated model. We can replace ks .
and k.. with expressions describing the nonlinear behavior of
the spring elements. More details of the theory for nonlinear
spring modeling are shown in SI Appendix, section 2, Fig.
S3, and Table S4.

Experimental study on unit cells. Experiments involve the
three frustrated models theoretically investigated in the
previous session. We develop a modular fabrication solution
to realize the global stretch model, including the spring
element, the wire connector, 3D-printed frames and handles
(Fig. 3A, Movie S2). The handle controls the level of prestress
in the spring element. The spring extension A/ is a function
of the radius of the handle Thandle and the number of interval
turns n, defined as follows: Al = n(27Thandle)/12. The
prestressed spring deforms the standard Kresling into a new
equilibrium state configuration. This new stable state is
frustrated as it stores elastic energy in both panels and
the spring. The amount of energy stored in the frustrated
model is tunable by controlling the spring extension. In
the compression experiments with the free-rotating fixture,
we test three different spring extensions and compare the
results with those of the standard origami cell (Movie S2).
Figure 3B reports the experimental results and theoretical
prediction. For the standard Kresling, we conduct tests on
five specimens and calculate the mean value (solid curves)
and the corresponding standard deviation (shaded regions)
using the formulas in SI Appendix, section 3. For the
frustrated Krelsing, we conduct tests on three specimens
for each prestressed model. The error bar at the first stable
state is the standard deviation calculated from the measured
displacement.

The strain energy plots (Fig. 3B top-left) confirm that the
frustrated models have non-zero base energy at the initial
stable states, and the amount of the base energy depends on
the spring extensions. Note that we assume that the spring
elements do not contribute to the energy formulation anymore
if they are deactivated (i.e., zero prestress). Consequently,
the behavior of the frustrated cell becomes identical to that
of the standard cell (Fig. 3B bottom-left). The plots in
Fig. 3B (right) illustrate the force-displacement relationship
obtained from both experiment and theory, respectively. We
zoom in on the initial loading region to show the shift of
force curves. Both experimental data and theoretical analysis
verify that the starting point of the force curve shifts as
the prestress increases. The amount of shift corresponds to
the height change at the first stable state in the frustrated
models. Note that the magnitude of the peak force decreases

4 — www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

as more prestress is applied in experiments. In theoretical
analyses, the peak forces are similar. This discrepancy is
caused by the panel buckling at initial loading with activated
frustration (Fig. 3B bottom-right), which is not considered in
the theoretical analysis (see more discussion in SI Appendix,
section 4).

We design a specific mechanism to apply positive prestress
in the global rotation model. This mechanism, which behaves
like a torsional spring, involves the customized inclined
component, the spring element, the wire connector, and
3D-printed frames and handles (Fig. 3C, Movie S3). The
handle controls the amount of prestress applied along the
torsional direction. The torsional angle An and torsional
stiffness kr . are defined as: An = n(27Thandle/Ttrame)/12 and
kre = T/An7 where T is the reaction torque, and 7fame is the
radius of the frame. Compared with the standard cell, the
prestressed cell is deformed in its initial stable configuration
with a non-zero base energy. The elastic energy is stored in
both the deformed panels and the springs. Given a constant
spring stiffness, the torsional angle controls the magnitude of
the energy stored in the initial configuration of the frustrated
model. We test three different angles under torsional loading
with the free-translating fixture (Movie S3). Both theoretical
and experimental results (Fig. 3D-left) verify the capability
of the global rotation model for tuning base energy at initial
stable states. In addition, the twist angle-torque curves for
deactivated and activated frustration are different as shown
in Fig. 3D (right). The zoomed-in plots further illustrate
the different initial loading points. The shift of those points
is related to the amount of prestress applied in the global
rotation frustrated model.

The two aforementioned global frustrated models incor-
porate only positive prestresses. In contrast, the crease
(local) stretch with negative prestress further enhances the
energy landscape programmability of the frustrated model.
The crease stretch prototype involves compressed springs
inserted in 3D-printed cases aside from the mountain creases
of the cell (Fig. 3E, Movie S4). Due to the prestressed
spring elements, the frustrated cell gets extended and then
stays in a new equilibrium state. The new state has a
non-zero elastic base energy contributed by the deformed
origami cell and the prestressed spring element. Tuning the
magnitude of the prestress leads to controllable base energy
at the initial stable states, as shown in Fig. 3F (top-left).
Moreover, the experimental results show that the shape of
the energy landscapes depends on prestress levels of the
springs. The more the spring element is compressed, the
higher energy barrier is achieved for the frustrated cell. This
behavior agrees with the theoretical analysis shown in Fig. 3F
(bottom-left). Figure 3F (right) verifies that the initial loading
position of samples with deactivated and achieved frustration
are different. The initial loading position is related to the
configuration of the Kresling origami at the first stable state.
The negative displacement u indicates increased height of the
origami sample in the frustrated model. On the other hand,
we validate the crease (local) stretch with positive prestress.
We refer to SI Appendix, section 5 and Fig. S4 for more
details.

Experimental study on assemblies. Beyond the studies at

the unit cell level, we explore the mechanical behavior of
origami assemblies composed of standard cells and frustrated
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cells. The cells are modular, and they can be connected by
miniature neodymium magnets embedded in the frames.

Standard Kresling assemblies. For an origami array with three
standard cells, there are, in total, eight stable states as
shown in Fig. 4A. In theory, fifty-six folding paths connect
any two stable states. In practice, sixteen out of fifty-six
folding paths are unachievable without transiting through
other stable states (Fig. 4B). For instance, state I (with
all three cells deployed) cannot deform directly to state
VIII (with all three cells folded) unless passing through the
other states where one or two cells have been folded. Note
that eight additional paths in Fig. 4C are infeasible due
to the intrinsic energy barrier AU built in the three cells,
i.e., AU(red cell)>AU (yellow cell)=AU (blue cell), which are
differentiated by controlling the panel thickness (see details
in Materials and Methods). Moreover, state VIII cannot be
pulled to state V because lower-energy barrier cells (blue
or yellow) must deploy before the higher-energy barrier cell
(red). As a result, only thirty-two out of fifty-six folding
paths are feasible (Fig. 4D). Eight feasible paths have been
verified experimentally under two types of loading conditions:
axial loading and torsional loading (Movie S5, details in

Movie S5 are shown in SI Appendix, section 6 and Fig. S5).

The axial loading condition involves two fixtures, i.e., one
is rotationally constrained, and the other one displays free
rotation (see more details in SI Appendix, section 7). The
corresponding testing results are presented in Fig. 4E. On
the other hand, the torsional loading condition is equipped
with the axially constrained fixture and the free-translating
fixture, respectively. The corresponding experimental data
are shown in Fig. 4F. According to the experimental data,
we calculate the energy landscapes of eight feasible paths in
SI Appendix, section 8 and Fig. S6.

Frustrated Kresling assemblies. The 3-cell origami assembly
shown in Fig. 5A is prestressed such that the top two cells
include springs on the mountain creases (local level) and the
bottom cell includes a rotational spring (global level). Each of
the frustrated cells has two stable states with tunable energy
barriers enabled by the prestressing level. As a result, the
assembly has, in total, eight stable states, like Fig. 4; however,
the behavior is quite different. The frustrated assembly
can be continuously reprogrammed by means of local cell
control. This reprogrammability leads to precise control
of the folding sequences, and enables the eight previously
infeasible folding paths of Fig. 4C to be achieved as feasible
folding paths in Fig. 5B. For example, although the intrinsic
energy barrier of the red cell is bigger than that of the blue
cell, the global rotation mechanism actively lowers the red
cell energy barrier. Therefore, when state I deforms to state
VII following path @, the frustrated red cell folds while
the blue cell remains deployed during the process. The
loading condition for this deformation is axial compression
with a rotationally constrained fixture, as shown by the green
curve in Fig. 5C (Movie S6). The plot has an orange curve,
which corresponds to the feasible deformation path @ in
Fig. 5B, under axial loading with free-rotating fixture (Movie
S6). Other feasible folding paths, i.e., path @ and path
@), are achieved by torsional loading conditions with the
axially constrained fixture and the free-translating fixture,
respectively, as shown in Fig. 5D (Movie S6). In addition,
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energy landscapes corresponding to feasible paths in Fig. 5C
and D are presented in SI Appendix, section 8 and Fig. S7.
More details of the reprogrammability of the feasible folding
paths and energy landscapes are shown in SI Appendix,
section 9 and Fig. S8.

The results in Fig. 5 demonstrate that the ability to switch
among different states, by controlling the prestressing levels,
enables the 8 feasible folding paths of Fig. 5B, something not
achievable with the non-frustrated Kresling array (Fig. 4).
While these folding paths could also be enabled by designing
new cells with predefined energy barriers, through material
and/or geometry selections, this discrete approach inevitably
introduces new infeasible folding paths and does not support
in-situ reconfiguration. In contrast, the continuous approach
of geometric frustration, combined with a finely tuned spring
mechanism, enables the elimination of infeasible folding paths.
This allows for dynamic reprogramming of folding behavior
within the same array, leading to adaptability and control.

Scope of frustration. Though our designs of frustration is
created based on Kresling origami structure, they can be
used to embed frustration into other origami structures. For
instance, Figure 6A gives an example to explore the influence
of prestressing on a curved-crease origami tube. The states
at the red and blue points as well as the force curves indicate
that the mechanism with stretching spring causes a shift of
initial state of the origami tube. Under axial compression
loading, the frustrated curved-crease tube exhibits significant
panel buckling (see the state at the blue-star point in Fig. 6A).
Moreover, detailed comparison between the frustrated and
non-frustrated curved-crease origami is shown in SI Appendix,
section 10 and Fig. S9.

The second application relates to programmable non-
commutative behavior of Kresling arrays (Fig. 6B). We
consider a Kresling array consisting of two lower energy
barrier cells at the top and one higher energy barrier cell at
the bottom, and consider two examples, one that does not
involve frustration and one that does. In both examples, we
apply counterclockwise twist followed by clockwise twist, and
then we reverse the actuation sequence (i.e., clockwise twist
followed by counterclockwise twist), always resulting in a total
zero net twist at the end of each actuation sequence. For the
first example, the array shows history-dependent behavior
in the sense that the deformed configuration depends on
the sequence of the twist actuation. We demonstrate this
feature by experiments on a reference configuration under
the actuation sequences described above (Fig. 6B-top). Note
that details of the jagged portion on the unloading curve are
elaborated in SI Appendix, section 11 and Fig. S10. The
two different end configurations demonstrate the relevance of
twisting history, which indicates non-commutative behavior.
For the example involving frustration, the top unit cell (blue)
is the same as before; however, the bottom two cells are
frustrated. The middle cell has linear (local) springs (with
induced negative prestress) providing it with a higher energy
barrier than the top cell. The bottom cell has an especially
designed torsional (global) spring (with induced positive
prestress) providing it with the highest energy barrier of
the assembly. We observe non-commutative state transitions
as well (Fig. 6B-bottom); however, comparatively, the two
final states in the frustrated Kresling array are different
from those in the non-frustrated Kresling array, resulting in

PNAS — September 25,2025 — vol. XXX — no.XX — 5

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620



621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

a programmable (frustration-dependent) non-commutative
state transition.

Furthermore, we create a shape-morphing metamaterial
by embedding the spring mechanism into a 3D-printed truss
prototype involving multiple Kresling columns (43) (Fig. 6C).
The level of prestress in each Kresling column depends on
the stiffness of springs. Here, the column 0 has no spring,
while the stiffness of the springs in column 1 and column 2
is 0.11N/mm and 0.35N/mm, respectively. All the springs
are connected with a handle through wires. Rotating the
handle applies a constant stretch to all the springs. Since
the spring of column 2 has the highest stiffness, it deforms
more than column 1 and column 0 (see Fig. 6C-bottom). As
a result, the varying deformation in different columns allows
the metamaterial to achieve shape-morphing behavior.

Discussion

We present geometrically frustrated Kresling assemblies with
tunable energy landscapes and folding paths. The assembly
is modular, and it consists of both standard origami cells and
frustrated cells. We introduce frustrated modules with three
types of prestress, i.e., global stretch, global rotation, and
crease (local) stretch. The prestress of the frustrated model
is continuously adjustable by controlling the special springs,
which allows for changing the energy barrier for the cell. The
theoretical analysis verifies that the energy landscape for the
frustrated cells is programmable and the corresponding energy
barrier is continuously tunable. We prototype all three types
of frustrated origami cells and use four loading and boundary
conditions to validate the behavior of the cells experimentally.
Experiments demonstrate that activating and deactivating
frustration can dramatically enhance the programmability of
the origami assembly, unlocking otherwise infeasible folding
paths. The present concept can be implemented widely
in reconfigurable systems where in-situ programmability is
needed in the application, e.g., adaptable metamaterials for
shape morphing.

Materials and Methods

Formulation of the frustration theory. Since the frustrated cell can
be controlled by both axial force, F', and torque, T', the work done
on the cell is calculated by W (u, ) = f Fdu + dego. The total
potential energy of the frustrated cell, II, can be expressed using
the total elastic energy, U, and work, W i.e.,

(u, ) = Upru(u, 0) = W (u, 9). (8]

Notice that II(u, ¢) is a function of two independent variables, u
and ¢. Based on the principle of minimum total potential energy,
equilibrium is achieved when 0II/du = 0 and 911/9¢ = 0. Thus,
the axial force, F', and the torque, T, are calculated by:

anru(u7 90) anru (’U,, SD)
= T = —_—
gu 0 Twe) 90 [9]

F(u, )
Fabrication of Kresling origami cells. Both standard and frustrated
origami cells were fabricated by a material composed of muti-layer

1. S Shan, et al., Multistable architected materials for trapping elastic strain energy. Adv.
Mater. 27, 4296-4301 (2015).

2. T Chen, J Mueller, K Shea, Integrated design and simulation of tunable, multi-state
structures fabricated monolithically with multi-material 3d printing. Sci. reports 7, 45671
(2017).

6 — www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

origami papers (Tant) and adhesive tapes in between (3M 9474LE,
0.17mm-thick).The crease patterns of the blue and yellow cells
include two layers of origami papers and one layer of adhesive tape.
The crease pattern of the red cell is made of three layers of origami
papers and two layers of adhesive tapes. We cut the mountain
creases for all the cells. Additionally, for the crease (local) stretch
(Fig. 3E) design, we cut a trapezoid hole on the panel to avoid
interaction between the prestressed element and the origami cell.
More details are shown in SI Appendix, section 12 and Fig. S11.

Fabrication of 3D-printed truss. The 3D-printed truss model in
Fig. 6C consists of two components: rods and soft joints, which are
fabricated using a Stratasys J55 Prime polyjet printer. The rods
are printed using the VeroWhite material, and the joints are printed
using FLXA9950 (Shore-A 50), with a mix of VeroUltraClear and
ElasticoClear.

Fabrication of prestressed elements. The 3D printed prestressed
components are fabricated using a Stratasys J55 Prime polyjet
printer. For the global stretch model, the frames and handle are
printed by the VeroWhite material, and the markers are printed by
the VeroMagenta material. For the global rotation model, the top
frame and markers are fabricated by the same material as the global
stretch design, while the bottom frame and handle are printed
by the VeroUltraClear material. For the crease (local) stretch
model, the frames and markers are printed by the same material
as the global stretch one, while the case assembled on the top
and bottom frames printed by the VeroYellow and VeroMagenta
materials,respectively. The pulley used in the global rotation model
is a ball bearing pulley (MiSUMIi, SZV3-12). The spring used in
the global stretch model is an extension spring (McMaster-Carr,
9065K566). The spring used in the global rotation model is an
extension spring (McMaster-Carr, 5108N036). The spring used in
the crease (local) stretch model is a compression spring (McMaster-
Carr, 9657K641). The springs in the global models are connected
to the 3D-printed components using a 0.3 mm diameter fishing wire.
More detailed parameters are provided in SI Appendix, section 12.
Note that the spring system can be manufactured by standard 3D
printers, which enhances the practicality of the frustration concept.
For instance, we show an illustration of integrating 3D-printed
springs into cell origami in SI Appendix, section 12 and Fig. S12.

Experimental setups. In Fig. 3, we conduct both compression tests
and torsion tests on an Instron loading frame machine (Model 68SC-
5 Single Column Testing System), equipped with free-rotating and
free-translating fixtures, respectively (see more information in SI
Appendix, section 12 and Fig. S13). The applied axial load and
torque have been measured with a force/torque sensor (Biaxial
Load Cell £445 N, £5.65 Nm). The compression experiments
are conducted at a speed of 0.25 mm/s, while the torsional
experiments are performed at 0.5 deg/s. In Figs. 4 and 5, we
conduct compression tests using both rotationally constrained and
free-rotating fixtures. Moreover, we conduct torsion tests using
both axially constrained and free-translating fixtures.

Data, Materials, and Software Availability. All data are included in
the article and/or supporting information.
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Fig. 2. Theoretical model of geometrically frustrated Kresling origami cells. (A) Global stretch feature. Standard Kresling origami (top-middle) and two frustrated models (top-left
and top-right). The left model has a compressed spring (negative prestress), while the right one has an extended spring (positive prestress). Here, ho denotes the height of
the standard Kresling cell, hy, is the height of the frustrated cell, and g is the height difference. (B) Reprogrammable energy landscapes. Top: intrinsic energy landscape
(black) versus tunable landscapes (orange) with the negative prestress model. Bottom: intrinsic energy landscape (black) versus tunable landscapes (orange) with the positive
prestress model. Left: the elastic energy U versus the normalized axial displacement u /u.,, under axial loading with free-rotation. Right: the elastic energy U versus the
normalized twist angle ¢ /., under torsional loading with free-translation. (C) Continuously tunable energy barrier with the global stretch feature. Normalized length changes
of the spring Al. /u.,, versus the energy barrier AU, which is defined as the maximum energy of a frustrated model Unax minus the energy at the first stable state U,'m. (D)
Global rotation feature. Standard Kresling origami (top-middle) and two frustrated models (top-left and top-right). The left model has a deformed torsional spring that rotates the

origami clockwise. The right model has a deformed torsional spring that rotates the origami counterclockwise. Here, An. denotes the rotating angle of the torsional spring.

(E) Reprogrammable energy landscapes. (F) Continuously tunable energy barriers for the frustrated model with global rotation. (G-I) Crease (local) stretch feature and the
corresponding energy solutions. The symbols by and bg, denote the lengths of mountain creases in the standard and the frustrated model, respectively.
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Fig. 3. Experiments involving the three frustrated models of the previous figure. (A) Global stretch with positive prestress. Top-left: illustration of axial loading with a free-rotating
fixture. Top-right: schematic of the design enabling prestress in the axial direction. Bottom-left: photo of an undeformed origami cell. Bottom-right: photo of a prestressed unit in
its initial stable state. (B) Experimental results and theoretical predictions. Top: experimental results comparing the behavior of the frustrated models with the standard origami

cell. Solid lines represent the mean value and shade regions represent the standard deviation of the experimental data. Bottom: corresponding theoretical predictions. Left:

axial displacement u versus stored elastic energy U. Right: displacement versus applied forces F'. The insets highlight the early stages of the test. (C) Global rotation with
positive prestress. Top-left: illustration of torsional loading with a free-translating fixture. Top-right: schematic of the design with torsional prestress in the cell. Bottom-left: photo
of an undeformed origami cell. Bottom-right: photo of a prestressed cell in its initial stable state. (D) Experimental results and theoretical predictions. (E) Crease (local) stretch
with negative prestress. Top-left: illustration of the loading with a free-rotating fixture. Top-right: schematic of the compressed springs strategically located along the mountain
creases. Bottom-left: photo of an undeformed origami cell. Bottom-right: photo of a prestressed cell in its initial stable state. (F) Experimental results and theoretical predictions.
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Fig. 4. Deformation paths achieved on 3-cell standard Kresling assembly under four loading conditions. The intrinsic energy barriers (AU) have been selected such that
AU (red cell)> AU (yellow cell)= AU (blue cell). The yellow and blue cells have opposite chiralities. (A) Stable states. (B) Unachievable folding paths. (C) Infeasible folding
paths. (D) Feasible folding paths. (E) Experimental results associated to rotationally constrained fixture and free-rotating fixture. The circled numbers in the plot correspond to
those in panel (D). (F) Experimental results associated to axially constrained fixture and free-translating fixture. The circled numbers in the plot correspond to those in panel (D).
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Fig. 5. Deformation paths achieved on 3-cell frustrated Kresling assembly under four loading conditions. The energy barriers of the frustrated cells (AUy,) have been
controlled such that AUy (red cell) < AUy, (yellow cell)x= AUy (blue cell). The yellow and blue cells have opposite chiralities. (A) Stable states. (B) Feasible folding paths,
which were infeasible in the previous figure. (C) Experimental results associated to rotationally constrained fixture and free-rotating fixture. The circled numbers in the plot
correspond to those in panel (B). (D) Experimental results associated to axially constrained fixture and free-translating fixture. The circled numbers in the plot correspond to

those in panel (B). The experimental result of path @) is the same as displayed in Fig. 1.
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Fig. 6. Scope of frustration. (A) Frustrated curved-crease origami structure. Left: photos of the non-frustrated curved-crease origami, the frustrated curved-crease origami, and
the buckled curved-crease origami, respectively. Right: experimental data of non-frustrated and frustrated curved-crease origami structures. (B) Programmable non-commutative
states enabled by frustration. Top: folding paths and corresponding twist angle vs. torque curves for the non-frustrated Kresling array. Bottom: folding paths and corresponding

twist angle vs. torque curves for the frustrated Kresling array. ccw, counterclockwise twist; cw, clockwise twist. (C) Shape-morphing metamaterial with controllable frustration.
Top: 3D-printed truss model embedded with different springs. The stiffness of the springs in column 1 and column 2 is 0.11N/mm and 0.35N/mm, respectively. Bottom:

deformed configurations for different amounts of prestress applied in the springs.
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