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Supporting Text

1. Calculation of sound absorption coefficient under clamped-free boundary
conditions

The geometric parameters used in the calculation are illustrated in Fig. S1.

=y

Fig. S1. Cross-sectional schematic of FN-Helmholtz resonator used in the theoretical model. Compared to the
configuration in Fig. 2A, the outer shell thickness is omitted, with only the cavity boundary dimensions are
considered. The cavity has a height / and radius R. The cylindrical shell has a radius a, thickness ¢, and length /.

The shell material characterized by a Young’s modulus £, Poisson’s ratio v, density ps, and loss factor 7.

Acoustic impedance of the air column within the neck
The acoustic impedance of the air column within the neck is derived following Crandall theory (1)

under the wide-tube approximation. For clarity, we outline the key derivation steps below.

: : : . . 2
Given that the neck radius a is much larger than the viscous boundary layer thickness (d, = K )

Po@
(2), where 4 is the dynamic viscosity, p, is the air density, o 1is the angular velocity), the air

column is modeled as a wide tube. The flow behavior in this case is illustrated in Fig. S2. During
longitudinal acoustic oscillations along the tube axis, viscous effects cause velocity gradients, with
the highest velocity at the center of air column and zero velocity at the tube walls. These viscous

effects are confined to a thin boundary layer near the wall, while the central “fluid core” exhibits
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nearly uniform axial velocity. The motion of this core is hindered by the interaction includes effects
of added inertia and resistance. Based on these assumptions, a theoretical model for the fluid

motion of the air column in the neck was developed.

dx— 4 [=

Fig. S2. Schematic illustrating lamellar motion of air in a moderately large tube (left) and the driving force

acting on an infinitesimal annular air element (right).
Consider an infinitesimal annular fluid element 27zrdrdx within the neck (Fig. S2, right). The
axial driving force per unit area acting on the fluid ringis ¢-dx, where ¢ represents the negative

pressure gradient parallel to the tube axis (¢ = —Z—p, p is the air pressure). The total driving
X

force on the annular ring of fluid element is ¢@dx - 277rdr . This force is opposed by two components:
1. Inertial (reactance) force p,-2zrdrdx- joé due to fluid acceleration, where £ is the

fluid velocity (time derivative of the fluid displacement &) along the x-direction.

2. The net frictional force g(—Zﬂm’x 7] aa—gj dr acting on the annulus. This term is derived
r r

from the frictional force on the inner surface of the ring, —27zrdx- 'uz_f, the negative sign
r

accounts for the velocity gradient decreasing with increasing radius ». The net force is

obtained by evaluating the radial gradient of this shear stress across the thickness dr.

Force equilibrium yields the governing equation:
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Py - 27crdrdx - joé +§[—27rrdx~ U gfjdr =@ 2rrdr-dx [1]
r

or
Simplification of this equation yields:

L MO O
{pro rar[r arﬂi ¢ [2]

in which only & is a function of 7. It may be written as:
ek |E=— L4 3
[8}*2 " }6 U 5]

—jp,
7

where k, = represents the viscous wave number.

The solution to this equation is:

de A Al (kr) 4

here J, is the zeroth order Bessel function of the first kind.

To ensure finite velocity at » = 0, and vanishing velocity at the boundary » = a, we determine the

constant 4. This yields:

£r)=? [I_Jo(kvr)} "

Ok

Integrating f(r) over the section (i.e., the circular area with radius a), gives the average velocity:

= 1 e p 2 e, Jolkr)
5_72'612 IO §2ﬁrdl’——ﬂk3 ?J'O {l—m rdr [6]

v

} (7]

that is:

E: ¢ |:1_ 2 Jl(kva)

_ﬂkvz a']o(ka)

v
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here J, denotes the first-order Bessel functions of the first kind.

The specific acoustic impedance of the air column is defined as the ratio of the pressure drop
/ -~

Ap = '[0 ¢dx =@l (over length /) to the average velocity & , that is:

#l Lkl
Z = == o 8
TETTT 2 a(ka) .

kaJ,(ka)

This impedance incorporates both inertial reactance (imaginary part) and viscous resistance (real
part) within the air column.

Additional contributions to the total impedance arise from tube ends. As described by Ingard’s
theory (3):

1.  Viscous losses at both ends contribute a resistance term:

R, =2\2uwp, [9]

2. End radiation introduces a mass reactance term:

X, = jop,s [10]

where the effective end correction length ¢ is given by & =0.85a (2 -1 .25%).

Combining these with the internal impedance Z, gives the total specific acoustic impedance:

—uk?l .
Z = v +2, /2 + o 11
total _i J] (kva) lua)po ]a)po [ ]

ka J,(ka)

Finally, normalizing to the system-level acoustic impedance (pressure per volume velocity) by

dividing by the cross-sectional area S, = za” yields:



1 —pk’l .
7 = > +22uwp, + jop,0 12
« 2 _iJl(kva) HOP, + JOP, [12]

kaJ,(ka)

This integrated expression, synthesizing Crandall’s internal flow theory and Ingard’s end effects,

fully characterizes the acoustic impedance of the neck’s oscillatory air column.

Mechanical Impedance of the Cylindrical Shell

The governing equation for cylindrical shell vibration under axisymmetric loading is expressed as
(G

4
E
d W+—tw=p [13]

D
dxt b

where p is the distributed inner pressure, w is the radial displacement, x is the axial coordinate, b
is the middle-surface radius of the cylindrical shell, and D is the flexural rigidity of the shell.

The middle-surface radius b of the cylindrical shell is given by:

t
b=a+— 14
a 5 [14]

The flexural rigidity of the shell D is defined as:

_EP
D_m [15]

Define

_Em 3(1-)
" 4a’D

,64

[16]

Substituting into Equation (13), the normalized form becomes:

2
d“w
4
x

44:£ 17
+ﬂwD [17]

For the case of constant pressure p, the general solution of the normalized equation is given by (4):
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w(x) = pEbt : + C, sin(Bx)sinh(Sx) + C, sin(Sx) cosh(Bx) + C, cos(fx)sinh( Sx) 18]

+C, cos(fx)cosh(Sx)

For a clamped-free cylindrical shell, the boundary conditions are:

At the clamped end (x = 0):

w(x,0)=0, w(x,0)=0 [19]

At the free end (x = /):

w'(x,[)=0, w"(x,[)=0 [20]

The particular solution satisfying these boundary conditions is:

2
_pbgW) 21]

where ¢(x) is the spatial modulation function:

[ sinh?(31) +sin’ (1) | sin(Bx) sinh( Bx)
cosh’(BI)+cos’(BI)
[cosh(B1)sinh(I) + cos(BI) sin( BI) ][ sin(Bx) cosh(Bx) — cos(Bx) sinh(Bx)]
cosh?(Bl) +cos*(BI)

q(x) =1+

[22]

—cos(fx)cosh(fx)

Discretized Impedance Model

As shown in Fig. S3, the cylindrical shell and the enclosed air column are discretized into n

, / C e th (-
micro-segments of equal length — along the axial direction. For each segment ;" (l =1,2,..., n),
n
the acoustic impedance of the air column, Z, (xl. ) , and the equivalent acoustic impedance of the

flexible shell, Z, (xi), are connected in parallel, where x, = Ll represents the position of the
n

i” segment along the shell axis. Detailed derivations of these impedance components under



clamped-free boundary condition are provided below.

Zo(®1)
Zo(®2)

Zo(@i)

Zo(@n- 1)

Z‘,,M

Fig. S3. Cross-sectional schematic of the cylindrical shell and enclosed air column discretized into #» micro
segments of equal length.

The pressure at the position x, is expressed as:

_Fx)
p(x)= S(x) (23]

where F (xl.) and S (xi) represent the acting force and the lateral surface area of the cylindrical
shell segment at position x,, respectively.

The lateral surface area of the segment at x, is constant and given by:

S(x,)= 2ﬂ-—bl [24]
n

in which 27bl is the mid-surface area of the cylindrical shell.

The local equivalent stiffness of the cylindrical shell at position x;, is defined as:

1



F(x,)

K (x)= w(x,)

[25]

where w(xl.) is the radial displacement at position x,, given by:
p(x,)b’q(x)
WX |J=————— 26

Combining Equations (23) to (26), the local equivalent stiffness is obtained as:

2rlEt
K )= 27
(x,) ba () [27]

Poisson effect

When the cylindrical shell undergoes dynamic vibration, neighboring segments experience axial

inertial constraints, causing the shell deformation mode to approximate a plane strain state (¢_ = 0).

This state reflects stiffness enhancement due to the Poisson effect, and thus, the Young’s modulus

should be adjusted to an equivalent modulus:

[28]

The applicability of this equivalent modulus depends on the excitation frequency:

1. At high frequency ( @>0): inertial constraints are significant, and the plane strain

assumption holds, so the equivalent modulus E* ~

> 1s appropriate.

2. At low frequency quasi-static (@ — 0): constraints are negligible, reducing to plane stress
state (o, = 0), so the equivalent modulus E* = E is appropriate.
Considering the plane strain correction, the local equivalent stiffness is updated to:

3 27lEt _ 2rlEt
nbg(x,) nb(1-v*)q(x,)

K, (xi)

[29]



The local mechanical resistance at position x, is given by:

K (x.
R, (x) =" 2 (%) [30]
0]
The local mass at position x; is constant and given by:
2p mbtl
M, (x) =25 [31]
n
Thus, the local mechanical impedance at position x; is:
K (x.
Zm(x[):Rm(xi)+j(a)Mm(x[)— u ’)} [32]
0]
The mechanical-acoustic impedance conversion follows (5):
Z (x
Z, ( xi) - M [33]

here Z, (xl.) represents the equivalent acoustic impedance of the flexible cylindrical shell for

each segment.

Similarly, the acoustic impedance of the air column for each segment is:

Z
Z (x)= n“ [34]

Iterative Calculation of Coupled Acoustic Impedance

The total equivalent impedance Z, of the system is calculated recursively using the equivalent

circuit diagram (Fig. S4).
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Fig. S4. Equivalent circuit diagram of the discretized impedance model.

th segment, the equivalent impedance, 7, , is computed as the parallel

n

Starting from the »

combination of Z, (x,) and Z, (x,), followed by a series connection with Z, (x, _,):

Z,(x

)2,(x,) +Z,(x,,) [35]

2

For the preceding segments, the recursive relationship is expressed as:

_ Iz, (x.) n

= Z (x_,), (i=nn-1,..73 [36]
Ry A AR )

This iterative process continues until the first segment is reached, at which point the coupling
impedance between the air column and the shell is fully determined:

7= LAn) (x) [37]
1 I,+Z, (xl)

where T, represents the equivalent impedance of the coupled air column-shell system.

11



Acoustic Reactance of the Cavity
The system includes the acoustic reactance of the cavity, expressed as (5):

2
. PoCo

L =—j——- [38]
J oV

where the cavity volume V is given by:
V=nRh—-r(a+1)] [39]

Total Acoustic Impedance and Sound Absorption

Finally, the total acoustic impedance of the system is expressed as:

Ze = T{ —+ ZC [40]

The sound absorption coefficient is calculated as (2):

2

Z,S = Py

[41]
2,8+ pc

2

: : : T . : :
where S is the cross-sectional area of the impedance tube (.S = , d Dbeing the inner diameter

of the tube), and pc, is the characteristic impedance of air. This formula can also be

. : : . : . N
conveniently rewritten in terms of the normalized acoustic resistance x, =Re and
PoCo

ZS
normalized acoustic reactance y, = Im( £ J as (5):
PoCo

P [42]
(+x) +y!

It follows that when Z  satisfies Z .S =p,, (ie., x,=1 and y =0), the sound absorption

coefficient reaches its maximum value, a =1.

12



2. Closed analytical form when assuming free boundary conditions at both ends

For a cylindrical shell with free boundary conditions at both ends, the spatial modulation function

(Eq. 22) becomes ¢(x,)=1. The equivalent stiffness K, (), mechanical resistance R (x;),

and mass M (xl.) for each segment (Egs. 29-31) simplify to position-independent constants:

2rlEt
K (x)=——
(0= o
K (x,
Rm (xi): 77 ma)(xl) [43]
2p,7btl
Mm (xi) = T

Substituting Equation (43) into Equations (32) and (33), yields:

2 g2 2
Zb(xi) n—m{n""j[w_q} [44]

" 2zlaob (1-v7) E

Define the equivalent acoustic impedance Z, for the entire cylindrical shell as:

Et [ &’ pb’(1-Vv?)
Z =—" Lro ) 45
b 27zla)b3(l—v2){n+]( E ol

Thus, the equivalent acoustic impedance for each segment becomes:

Z,(x,)=nZ, [46]

The acoustic impedance of air in the neck (Eq. 12) can be rewritten as:

1 —uk’l .
7 = Y + 22 uwp, + jop,o 47
LR 1 i‘]l(kva) HOP, + JOP, [47]

- kaJ,(ka)

The acoustic impedance for each segment (Eq. 34) can be re-expressed as:

Z
Z (x)= 7“ [48]

13



Infinite Ladder Network Model

The system is modeled as an infinite ladder network (Fig. S5).

T2

T2

T2

Fig. S5. Infinite ladder network model under free boundary conditions at both ends.

The total impedance is calculated using the following recurrence relation:

nr,

ntn
Z.
Zl_=—’*1r2 +r, (i=2,3,...,n) [50]
Z , +r,
where the parameters are :
V4
}/i = Za (xi) =—

n [51]

To facilitate analysis, Equation (50) is reformulated into a standard fractional recurrence form (6):

7 = hn +(”1 +r2)Zi—1

i

52
ntZ >

14



The objective is to determine the limiting value of Z as n — oo. Since the coefficients 7, r,

are functions of n, we first seek a closed-form expression for Z; in terms of 7 and r, before

evaluating the limit. The solution to the recurrence relation is expressed as a linear fractional

transformation:

Zn —m — ynfl Zl —-m [53]
Z, —m, Z, —m,

where the fixed point m,, m, and attenuation factor y satisfies:

_hn +(r+r)m

[54]
r,+m
— n+tn-—m [55]
htn—m,
Solving quadratic Equation (54) yields two roots:
no|n
m; = 5 + Z + nr,
[56]
n_ |
m, = E — Z + nr,
Substituting Equation (51) into the above yields:
Z z?
mlzz—“+ 4“2+ZaZb
n n (57]
Z z?
m,=—*—,|—5+2 72
> on N4 T
Then attenuation factor y becomes:
2 |Z 1
y=1-= |2« +0(—2) [58]
n\Z, n

15



As n — oo, neglecting infinitesimally small terms, the asymptotic behavior is:

limm, =\/Z Z,

n—0

limm,=-\/Z,Z,

n—»0

) ,é
. - Z,
limy" ' =e *

n—>0

Substituting these into Equation (53) gives:

Zﬂ
. l—ezJ;
IimZ =——+./Z Z

H—>0 72J§Z a™b
l+e '

—2x

Using the identity tanhx = —- the total impedance simplifies to:

l+e

limZ, =,/Z Z, tanh 6“
n—0 5

16
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[60]

[61]



3. Comparison of Theoretical Models

We compare the absorption predictions from the full-recursive model and the closed-form model
for shell lengths of / = 35 mm (Fig. S6A) and / = 55 mm (Fig. S6B). All other geometrical
parameters and material properties are held constant (identical to those in Fig. S20). The
differences between the full-recursive model (clamped-free) and the closed-form analytical model
(free-free) are minor (Fig. S6A), indicating that the closed-form approach still captures the main
behavior despite the boundary condition variation. Moreover, this discrepancy diminishes with
increasing shell length (/ = 55 mm, Fig. S6B), as the influence of end constraints becomes less

significant relative to the overall behavior of the shell.

A 10 B 10
0.8} 0.8}
3 ]
5 06} S 0.6}
= )
g— 2
2 0.4} g 0.4}
© ©
02} = = closed-form solution 02F = = closed-form solution
e fUll-recursive model S ~ e fUll-recursive model

200 300 400 500 600 700 200 300 400 500 600 700
frequency (Hz) frequency (Hz)

Figure S6. Comparison of absorption predictions based on the closed-form analytical model (free-free
boundaries) and full-recursive model (clamped-free boundaries) for shell lengths of (A) / = 35 mm and (B) / =
55 mm. All other geometrical parameters and material properties are held constant (¢ =4 mm, =1 mm, R =
13.9 mm, /4 = 48.8 mm, E = 148.5 kPa, v=10.49, p, = 1,070 kg/m?, n=0.2).
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4. Viscoelastic Characterization of Silicone Rubber

To characterize the viscoelastic properties (storage modulus £, and loss factor 7) of silicone rubber
(Ecoflex-30) used in the FN-Helmholtz resonator, we investigated multiple experimental methods:
dynamic mechanical analysis (DMA) in compression mode, time-temperature superposition (TTS)
for high-frequency extrapolation, and the cantilever beam resonance method per ASTM E756-05.

We compared the results obtained from these testing methods.

Dynamic Mechanical Analysis (DMA)

DMA was performed using a TA Instruments DMA 850 analyzer in compression mode (setup
shown in Fig. S7TA). Square samples (dimensions: 18 x 18 x 6 mm?, Fig. S7B) were tested under
frequency sweeps from 1 Hz to 181 Hz at 10 Hz intervals, with a strain amplitude of 0.5% and at
a constant temperature of 25°C. The sample dimensions were optimized to minimize data

fluctuations and instability at higher frequencies.

Time-Temperature Superposition (TTS)
To extend the DMA data beyond 181 Hz, we conducted additional experiments using the TTS
principle (7). The sample was tested over a temperature range from 25°C to -30°C in 5°C intervals.
At each temperature, frequency sweeps were performed at discrete points: 1 Hz, 10 Hz, 30 Hz, 50
Hz, 70 Hz, 90 Hz, 110 Hz, 130 Hz, 150 Hz, and 170 Hz. The raw data for storage modulus and
loss factor versus frequency at different temperatures are shown in Fig. S7C and S7D, respectively.
The results show that both parameters increase slightly as the temperature decreases.

Then, the curves can be horizontally shifted to a reference temperature (25°C) according to the
Williams-Landel-Ferry (WLF) equation (8):
¢(r-z,)

loga, = _—C2 +(T—T,e_,r)

[62]

where a, is the shift factor, 7], is the reference temperature, and empirical constants C, and

C, were fitted from the data.

18
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Fig. S7. Dynamic Mechanical Analysis (DMA) Setup and Viscoelastic Properties of Ecoflex-30 Silicone Rubber.
(A) Photograph of the TA Instruments DMA 850 analyzer. (B) Square-shaped sample used for testing
(dimensions: 18 x 18 x 6 mm?®). (C, D) Storage modulus (C) and loss factor (D) versus frequency at temperatures
from 25°C to -30°C. (E, F) TTS-mastered curves (blue) at 25°C reference temperature, overlaid with direct
DMA data (25°C, orange): storage modulus (E) and loss factor (F).

The resulting TTS master curves extend the data up to 596 Hz (Fig. STE for storage modulus and
Fig. S7F for loss factor, shown in blue). The direct DMA frequency sweep (< 181 Hz) test results
at 25°C (orange) and the extrapolated data (181-596 Hz) are presented together. The storage

modulus and loss factor show a gradual, albeit fluctuating, increase at higher frequencies. Still, the
19



changes are minimal: for example, storage modulus rises from 152 kPa at 170 Hz to 164 kPa at
574 Hz, and loss factor increases from 0.191 to 0.208.

While direct DMA frequency sweeps remain the most straightforward method for assessing
viscoelastic properties below 181 Hz, TTS provides evaluation for higher frequencies at the cost
of increased experimental complexity and time. Notably, not all materials are amenable to TTS

extrapolation due to deviations from thermos-rheological simplicity (9).

Cantilever Beam Resonance Method

As an alternative method to assess viscoelastic properties at discrete higher frequencies, we
investigated the ASTM E756-05 standard (10) using a cantilever beam resonance setup.
Rectangular beam samples (dimensions: 100 x 6 x 6 mm?, Fig. S8) were clamped at one end and
excited to measure resonance frequencies and damping. This yielded data only at specific
resonance modes: 125.1 Hz (first mode), 190 Hz (second mode), and 255 Hz (third mode). The
results are summarized in Table S1 below, showing that the storage modulus and loss factor exhibit

limited variation at elevated frequencies.

Fig. S8. Photograph of the test sample used for the cantilever beam resonance method.

Table S1. Viscoelastic Properties from Cantilever Beam Resonance Method

Storage modulus

Frequency (Hz) (kPa) Loss modulus (kPa) Loss factor
a
125.1 132 19 0.1415
190 136 21 0.1562
255 138 22 0.1581

20



5. Stability of Sound Absorption Performance
In this section, we investigated the stability of the FN-Helmholtz resonator's sound absorption

performance across different environmental and operational conditions.

Long-term Stability

We measured the acoustic properties of the FN-Helmholtz resonator (the same sample shown in
Fig. S5F in the main text) under ambient conditions (25°C) at various time points: Day 1

(immediately after fabrication), Day 60 (60 days after fabrication), and Day 80 (80 days after
fabrication). As illustrated in Fig. S9, the absorption coefficient, normalized acoustic resistance,

and normalized acoustic reactance exhibit robust performance over time. The resonator sustains

high absorption efficiency (a@ > 0.96) across its operational bandwidth (231-338 Hz) even after

80 days. A minor shift in the absorption peaks toward higher frequencies is evident (e.g., the first
peak shifts from 239 Hz to 243 Hz), which can be attributed to the natural aging of the silicone
rubber. Importantly, this shift tends to stabilize after the initial period, as demonstrated by the
nearly identical curves recorded on Day 60 and Day 80. For applications that demand exceptional
long-term stability, strategies such as material modifications or process optimizations could be

implemented to further mitigate these aging effects.

I
o

1 15 . ‘ ; 2.0
3 8
& G
0.8 2 3

S @ o 107

- %) QO

& 3 8 o
804 by o
® S X
T .
E E
2 2

[— Day1 — Day60 — Day 80
‘ . . . ‘ . 20 ‘ . ‘
150 250 350 450 550 150 250 350 450 550 150 250 350 450 550
frequency (Hz) frequency (Hz) frequency (Hz)

Fig. S9. Long-term stability of the FN-Helmholtz resonator. Absorption coefficient, normalized acoustic
resistance, and acoustic reactance measured on Day 1, Day 60, and Day 80.
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Temperature Effects on Sound Absorption Performance

Temperature variations may affect the viscoelastic properties of Ecoflex-30, potentially
influencing the sound absorption performance of the FN-Helmholtz resonator. From the TTS raw
data (Figs. S7C and S7D), decreasing temperature increases both storage modulus £ and loss
factor 5 (e.g., E rises from 152 kPa at 25°C to 169 kPa at -10°C; # rises from 0.19 to 0.22). To
quantify the temperature effect, we conducted coupled acoustic-structural simulations in
COMSOL Multiphysics using viscoelastic parameters at two representative temperature: 25°C
and -10°C, with identical geometry to that in Fig. 2A (also shown in Fig. S19).

The simulated normal-incidence absorption spectra (Fig. S10) show minor shifts: the first peak
frequency moves from 327 Hz at 25°C to 334 Hz at -10°C, while the overall broadband profile
remains largely preserved. These results indicate that the FN-Helmholtz resonator maintains

relatively stable broadband absorption performance across a wide temperature range.

1.0 . . . .
0.8}
: \
S 06}
a
S 04f
Q0
©
0.2}
—25C
O 1 1 1 L L
200 300 400 500 600 700
frequency (Hz)

Fig. S10. Simulated sound absorption coefficients of the FN-Helmholtz resonator using viscoelastic parameters
at 25°C (E = 152 kPa, n = 0.19; black curve) and -10°C (E = 169 kPa, n = 0.22; red curve).
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Absorption Under Oblique Incidence

To extend the model’s applicability to realistic scenarios involving non-normal incidence, we
further consider oblique incidence at angle 6 (measured from the normal to the surface).
Assuming the surface is locally reacting, i.e., the acoustic impedance is independent of the angle
of incidence, which is a valid approximation for resonant absorbers (11), the absorption coefficient
a(0) is calculated by modifying the formula (Eq. 41) to account for the effective impedance

projection along the direction of propagation:

2
a(0)=1- ZeScosﬁ—poco| (63]
Z,5cos 0+ poco‘

Using the full recursive model, we calculated the absorption spectra for representative incidence

angles of 0°, 30°, and 60°. The calculations utilized geometric and material parameters identical

to that in Fig. S20. As shown in Fig. S11, the absorption spectra vary with incidence angle,
exhibiting differences across frequency bands. For instance, a reduction in absorption in the first
peak at higher angles, accompanied by an increase in mid-frequency regions. These variations
arise from changes in impedance matching between the absorber and the incident wave as a

function of angle.

1.0

© o o
A O 0

absorption, «

o
N

—0° —60°

200 300 400 500 600 700
frequency (Hz)

Fig. S11. Sound absorption spectra under different incidence angles (0°, 30°, 60°).
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Absorption Under High Sound Pressure

To evaluate potential influences of material nonlinearity at elevated incident sound levels, the
normal-incidence sound absorption coefficient of the FN-Helmholtz resonator (configuration as
shown in Fig. 2A) was measured under white-noise excitation at various source levels: 90 dB
(0.632 Pa), 100 dB (2 Pa), 110 dB (6.32 Pa), 120 dB (20 Pa), and 129 dB (56.2 Pa, the maximum
output achievable by the impedance tube speaker), with the experimental setup shown in Fig. S14.

The measured absorption curves are shown in Fig. S12.

1.0 . .

c o o
S (o)) 00

absorption, «

o
N

0 : . : : .
200 300 400 500 600 700

frequency (Hz)

Fig. S12. Sound absorption spectra under various incident sound pressure levels.

All curves are nearly identical across this range of incident sound pressures, which indicates that
the absorber operates linearly even at high excitation levels. We note that the curve at 90 dB
appears slightly less smooth, which is attributed to a lower signal-to-noise ratio at this pressure
level. Similarly, minor fluctuations are observed at high frequencies under 129 dB excitation,
likely due to distortion or limitations of the acoustic source at its maximum output.

To quantitatively assess structural linearity, we performed finite element simulations in COMSOL
Multiphysics (detailed in Fig. S19) to extract the maximum radial displacement and principal
strain of the soft cylindrical shell under these incident sound pressures. The results are summarized

in Table S2 below:
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Table S2. Simulated maximal displacement and strain of the soft shell under different sound pressure.

Sound pressure (Pa) dB Maximal displacement (mm) Maximal strain
0.632 90 0.0005 0.016%
2 100 0.0017 0.051%
6.32 110 0.0052 0.162%
20 120 0.0165 0.511%
56.2 129 0.0464 1.440%

Even at the highest excitation level of 129 dB (56.2 Pa), the principal strain is only 1.44%. These
values are well within the linear elastic regime of Ecoflex-30 silicone rubber, which has been
reported to exhibit linear stress-strain behavior up to approximately 10% strain (12). Therefore,
we conclude that the structural response of the soft shell is expected to remain linear at significantly
high sound pressure levels, such as 129 dB. These results support the validity of the linear model
used in our study. Potential acoustic nonlinearities in the air medium at even higher sound pressures

were not explored in this study.
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Fig. S13. Fabrication process of the FN-Helmholtz resonator. (A) CNC-machined aluminum alloy molds used
for silicone casting, labeled as Mold A (left) and Mold B (right). Mold A contains a larger cylindrical cavity
(inner diameter: 10 mm) with a sealed bottom (taped), while Mold B includes a central cylindrical pillar
(diameter: 8 mm) and four peripheral through-holes for excess silicone precursor drainage. Mold A and Mold B
have the same outer diameter. (B) Silicone precursor was injected into Mold A, and Mold B was inserted into
the cylindrical cavity. The taped bottom prevented precursor leakage from the bottom. This created an annular
gap filled with silicone precursor. Excess precursor drained through the four peripheral through-holes of Mold
B. (C) Inverted view of the assembled molds, clearly showing the annual gap formed between the molds. (D) A
positioning ring was nested around the outer surfaces of both molds to ensure accurate coaxial alignment
throughout the mold length. (E) After 4 hours of curing, the molds were disassembled, and the silicone shell was
demolded and trimmed to its final dimensions, with deviations below 0.05 mm from the mold design. (F) Final
assembly of the FN-Helmholtz resonator, with the flexible shell integrated into the outer structure. For
illustration, the outer shell is rendered as transparent acrylic; the actual test sample used opaque 3D-printed resin
shell. Note: white scale bar = 10 mm in all panels.
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Fig. S14. Experimental setup for sound absorption measurements and assessment of sample orientation effects.
(A) Photograph of the horizontally oriented acoustic impedance tube (AWA6290T, Hangzhou Aihua Instruments
Co., Ltd.) with an inner diameter of D = 29 mm. Measurements are conducted according to ISO 10534-2,
utilizing broadband white noise excitation (506300 Hz, 110 dB SPL) and capturing acoustic signals with two
microphones. Sound absorption coefficients were calculated using the transfer function method. (B) Photograph
showing slight gravitational sagging of the flexible cylindrical shell due to its low stiffness in the horizontal
position (white scale bar = 10 mm). (C) Photograph of the vertical setup, eliminating gravitational sagging. (D)
Comparison of sound absorption coefficients for horizontal and vertical orientations, showing nearly identical
results and confirming that sagging has negligible influence on acoustic performance under the tested sample
conditions. The sample was made from Ecoflex-30 (Young’s modulus ~ 90 kPa; see Fig. 2B).
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Fig. S15. Experimental setup and results for vibrational displacement of the silicone rubber cylindrical shell. (A)
Photograph of the measurement setup, including a Polytec PSV-500 laser Doppler vibrometer, an acoustic
impedance tube with a speaker as the sound source, and the tested sample mounted via a 3D-printed extension
adapter. (B) Sample enclosed in a transparent acrylic shell designed for unobstructed laser access, with a
rectangular cavity to minimize laser reflection artifacts. The internal volume of the rectangular cavity matches
that of the cylindrical cavity in Fig. 2A. One end of the sample is designed to rotate to fixed angular positions,
enabling scanning along different axial lines. Blue line indicates scanning axial scanning paths, with a spatial
resolution of 0.2 mm. The true clamped end (/ = 0 mm) is obscured by the fixture. Scanning starts at / =2.5 mm
(corresponding to x = 0) and ends at / = 36.5 mm (x = 34 mm), covering a distance of 34 mm axially. (C)
Schematic showing the three circumferential positions (0°, 120°, and 240°) of the scanning lines. (D, E)
Measured displacement amplitudes under (D) 330 Hz and (E) 500 Hz acoustic excitation along the three
scanning lines. Blue curve shows the averaged amplitude profile. (F, G) Measured phase distributions of radial
displacement at (F) 330 Hz and (G) 500 Hz across the three lines, referenced to the speaker input signal and
normalized to zero phase at the scanning start point (x = 0). Blue curve shows the average phase profile.
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Fig. S16. Structural and simulation details of the RN-Helmholtz resonator model corresponding to Fig. 1A. (A)
Cross-sectional schematic of the resonator. The cylindrical neck has a radius of @ = 1.7 mm, wall thickness ¢ =
1 mm, and length / = 37 mm, with a 1.5 mm segment (/1) anchored to the outer shell. The cavity is enclosed
by an outer cylindrical shell with radius R = 14.5 mm, thickness #; = 1 mm, and total height # = 52 mm.
Both the cylinder neck and outer shell are modeled with a Young’s modulus of £ = 2,650 MPa, Poisson’s ratio v
= 0.4, density p; = 1,120 kg/m?, and loss factor # =0.01. (B) Physical domain assignment used in the coupled
acoustic—structure simulation in COMSOL Multiphysics. PML stands for perfectly matched layer. (C) Finite
element mesh of the RN-Helmholtz resonator model. The domain is discretized using hexahedral elements, with
locally refined boundary layers in the thermo-viscous acoustics region. (D) Simulated sound absorption
coefficient. The RN-Helmholtz resonator exhibits a narrow absorption peak of 0.999 at 150 Hz, with an effective
bandwidth (> 0.8) spanning only 18 Hz, from 141 to 159 Hz.
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Fig. S17. Structural and simulation details of the Multiple RN-Helmholtz resonators model corresponding to Fig.
1E. (A) Schematic of the absorber integrating five resonators. The sample has a total height # =52 mm and outer
radius R = 14.5 mm. Each resonator contains a rigid neck of equal length (/=29 mm) and wall thickness (¢ = 1
mm). The inner radii of the different tubes are: 3.35 mm for neck 1, 3.2 mm for neck 2, 3.1 mm for necks 3 and
4, and 2.95 mm for neck 5. Material properties are identical to those in Fig. S16. (B) Top view schematic of the
resonators. The thickness of the partition walls between cavities is #,,= 1 mm. All cavities have the same height
of 49 mm (excluding 3 mm top and bottom plates), but vary in cross-sectional area: 171 mm? (Cavity 1),
120.6 mm? (Cavity 2), 88 mm? (Cavity 3), 70.6 mm? (Cavity 4), and 56.2 mm? (Cavity 5). (C) Finite element
mesh in COMSOL Multiphysics using hexahedral elements, with refined thermos-viscous boundary layers. (D)
Simulated sound absorption coefficient of the coupled system shows broadband absorption (300-510 Hz, o >
0.8) with peaks at 315 Hz (0.971), 360 Hz (0.975), 410 Hz (0.960), 460 Hz (0.952), and 495 Hz (0.841). For
comparison, the absorption spectra for individual resonators are also shown: Unit 1 (purple dashed line, 313 Hz
peak, 0.976), Unit 2 (orange, 359 Hz, 0.932), Unit 3 (gray, 412 Hz, 0.890), Unit 4 (blue, 368 Hz, 0.856), and
Unit 5 (green, 508 Hz, 0.769).
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Fig. S18. Structural and simulation details of the FN-Helmholtz resonator model corresponding to Fig. 1F. (A)
Cross-sectional schematic of the resonator. The design features a flexible cylindrical neck with radius a = 3.87
mm, wall thickness # = 1 mm, and length / = 37 mm, with a 1.5 mm segment (/) anchored to the outer shell.
The outer shell has a radius R = 14.5 mm, thickness #i = 1 mm, and height # = 52 mm. The flexible neck is
modeled as a viscoelastic material with Young’s modulus £ = 120 kPa, Poisson’s ratio v = 0.49, density p; =
1,120 kg/m?, and loss factor 7= 0.4. The material parameters of the outer shell are identical to those in Fig. S16.
(B) Finite element mesh in COMSOL Multiphysics using hexahedral elements, with refined thermos-viscous
boundary layers. (C) Simulated sound absorption coefficient of the FN-Helmholtz resonator shows two
prominent absorption peaks at 320 Hz (0.974) and 460 Hz (0.967), resulting in a broadband absorption region
where > 0.8 over a 215 Hz range (294509 Hz), more than 10 times higher than that in the RN-Helmholtz

resonator shown in Fig. S16D.
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Fig. S19. Simulation model of the FN-Helmholtz resonator corresponding to Fig. 2A and comparison between
simulation and experimental results. (A) Cross-sectional schematic of the resonator. The flexible cylindrical neck
has a radius @ = 4 mm, wall thickness # = 1 mm, and length / = 36.5 mm, with a segment (/; = 1.5 mm)
anchored to the outer shell. The outer shell has a radius R = 14.5 mm, wall thickness #; = 0.6 mm, and total
height # = 51.5 mm. The neck material is modeled with Young’s modulus £ = 148.5 kPa, Poisson’s ratio v=
0.49, density o, = 1,070 kg/m?, and loss factor #=0.2. (B) Physical domain assignment used in the coupled
acoustic—structure simulation in COMSOL Multiphysics. A background pressure field of 1 Pa is applied in the
pressure acoustic domain as the sound source. PML stands for perfectly matched layer. (C) Finite element mesh
in COMSOL Multiphysics using hexahedral elements, with refined thermos-viscous boundary layers. (D-F)
Comparison of simulation and experimental results: (D) sound absorption coefficient, (E) normalized acoustic

resistance, and (F) normalized acoustic reactance, all demonstrating close to excellent agreement.
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Fig. S20. Simulation model (corresponding to Fig. 3) for validation against analytical solution. (A) Cross-
sectional schematic of the model geometry. The cavity has a height # = 48.8 mm and radius R = 13.9 mm. The
cylindrical shell has a radius ¢ = 4 mm, thickness # = 1 mm, and length /= 35 mm. The cylindrical shell material
is modeled with a Young’s modulus £ = 148.5 kPa, Poisson’s ratio v= 0.49, density p; = 1,070 kg/m>, and loss
factor #=0.2. (B) Physical domain assignment in the COMSOL Multiphysics acoustic-structural simulation
model. (C) Finite element mesh in COMSOL Multiphysics using hexahedral elements, with refined thermos-

viscous boundary layers.
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Fig. S21. Experimentally measured and simulated acoustic properties for three resonator sets. (A-C) Set 1
(Ecoflex-20; a =4 mm, / =41.5 mm, = 1 mm, 2 = 63 mm), showing (A) absorption coefficient, (B) normalized
acoustic resistance, and (C) normalized acoustic reactance. (D-F) Set 2 (Ecoflex-0020 + W; @ =4 mm, [ =41.5
mm, ¢ = 1 mm, 2 = 72 mm), showing (D) absorption coefficient, (E) normalized acoustic resistance, and (F)
normalized acoustic reactance. (G-I) Set 3 (Ecoflex-0020 + W; a = 4.5 mm, /= 50 mm, ¢ = 1.5 mm, 2 = 100
mm), showing (G) absorption coefficient, (H) normalized acoustic resistance, and (I) normalized acoustic

reactance.
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