
1 

 

Supporting Information for 

Viscoelastic Structural Damping Enables Broadband Low-

Frequency Sound Absorption 

Yanlin Zhanga,b, Junyin Lib,c, Qiongying Wud, Marco Amabilib, Diego Misseronie, and Hanqing 

Jiangb,c,f* 

aSchool of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China 

bSchool of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China 

cWestlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China 

dZhejiang Sanlux Rubber Co. Ltd., Shaoxing, Zhejiang 312031, China 

eUniversity of Trento, 38123 Trento, Italy 

fResearch Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, 

China 

*Email: hanqing.jiang@westlake.edu.cn 

This PDF file includes: 

Supporting text 

Figs. S1 to S21 

Tables S1 to S2 

SI References 

 

 

mailto:hanqing.jiang@westlake.edu.cn


2 

 

Supporting Text 

1. Calculation of sound absorption coefficient under clamped-free boundary 
conditions 

The geometric parameters used in the calculation are illustrated in Fig. S1. 

 
Fig. S1. Cross-sectional schematic of FN-Helmholtz resonator used in the theoretical model. Compared to the 
configuration in Fig. 2A, the outer shell thickness is omitted, with only the cavity boundary dimensions are 
considered. The cavity has a height h and radius R. The cylindrical shell has a radius a, thickness t, and length l. 
The shell material characterized by a Young’s modulus E, Poisson’s ratio n, density rs, and loss factor η. 

Acoustic impedance of the air column within the neck 

The acoustic impedance of the air column within the neck is derived following Crandall theory (1) 

under the wide-tube approximation. For clarity, we outline the key derivation steps below. 

Given that the neck radius a is much larger than the viscous boundary layer thickness ( ) 

(2), where  is the dynamic viscosity,  is the air density,  is the angular velocity), the air 

column is modeled as a wide tube. The flow behavior in this case is illustrated in Fig. S2. During 

longitudinal acoustic oscillations along the tube axis, viscous effects cause velocity gradients, with 

the highest velocity at the center of air column and zero velocity at the tube walls. These viscous 

effects are confined to a thin boundary layer near the wall, while the central “fluid core” exhibits 
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nearly uniform axial velocity. The motion of this core is hindered by the interaction includes effects 

of added inertia and resistance. Based on these assumptions, a theoretical model for the fluid 

motion of the air column in the neck was developed. 

 
Fig. S2. Schematic illustrating lamellar motion of air in a moderately large tube (left) and the driving force 

acting on an infinitesimal annular air element (right). 

Consider an infinitesimal annular fluid element  within the neck (Fig. S2, right). The 

axial driving force per unit area acting on the fluid ring is , where  represents the negative 

pressure gradient parallel to the tube axis ( ,  is the air pressure). The total driving 

force on the annular ring of fluid element is . This force is opposed by two components: 

1. Inertial (reactance) force  due to fluid acceleration, where  is the 

fluid velocity (time derivative of the fluid displacement ) along the x-direction. 

2. The net frictional force  acting on the annulus. This term is derived 

from the frictional force on the inner surface of the ring, , the negative sign 

accounts for the velocity gradient decreasing with increasing radius r. The net force is 

obtained by evaluating the radial gradient of this shear stress across the thickness dr. 

Force equilibrium yields the governing equation:  

! !"!"#π

!"φ ⋅ φ

!
"

φ ∂
= −

∂
!

!!" #!#φ π⋅

! " !"!"# $ρ π ωξ⋅ ⋅ ! ξ!

ξ

! !"# "!
! !

ξπ µ
 ∂ ∂
− ⋅ ∂ ∂ 

!

! !"#
!
ξπ µ ∂− ⋅
∂

!



4 

 

  [1] 

Simplification of this equation yields: 

  [2] 

in which only  is a function of r. It may be written as:  

  [3] 

where  represents the viscous wave number.  

The solution to this equation is: 

  [4] 

here  is the zeroth order Bessel function of the first kind. 

To ensure finite velocity at r = 0, and vanishing velocity at the boundary r = a, we determine the 

constant A. This yields: 

  [5] 

Integrating  over the section (i.e., the circular area with radius a), gives the average velocity: 

  [6] 

that is: 

  [7] 
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here  denotes the first-order Bessel functions of the first kind.  

The specific acoustic impedance of the air column is defined as the ratio of the pressure drop  

 (over length l) to the average velocity , that is: 

  [8] 

This impedance incorporates both inertial reactance (imaginary part) and viscous resistance (real 

part) within the air column. 

Additional contributions to the total impedance arise from tube ends. As described by Ingard’s 

theory (3): 

1. Viscous losses at both ends contribute a resistance term: 

  [9] 

2. End radiation introduces a mass reactance term: 

  [10] 

where the effective end correction length  is given by .  

Combining these with the internal impedance  gives the total specific acoustic impedance: 

  [11] 

Finally, normalizing to the system-level acoustic impedance (pressure per volume velocity) by 

dividing by the cross-sectional area  yields: 
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  [12] 

This integrated expression, synthesizing Crandall’s internal flow theory and Ingard’s end effects, 

fully characterizes the acoustic impedance of the neck’s oscillatory air column. 

Mechanical Impedance of the Cylindrical Shell 

The governing equation for cylindrical shell vibration under axisymmetric loading is expressed as 

(4): 

  [13] 

where p is the distributed inner pressure, w is the radial displacement, x is the axial coordinate, b 

is the middle-surface radius of the cylindrical shell, and D is the flexural rigidity of the shell. 

The middle-surface radius b of the cylindrical shell is given by: 

  [14] 

The flexural rigidity of the shell D is defined as: 

  [15] 

Define 

  [16] 

Substituting into Equation (13), the normalized form becomes: 

  [17] 

For the case of constant pressure p, the general solution of the normalized equation is given by (4): 
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 [18] 

For a clamped-free cylindrical shell, the boundary conditions are: 

At the clamped end (x = 0): 

  [19] 

At the free end (x = l): 

  [20]             

The particular solution satisfying these boundary conditions is: 

  [21] 

where  is the spatial modulation function:  

 [22] 

Discretized Impedance Model 

As shown in Fig. S3, the cylindrical shell and the enclosed air column are discretized into 𝑛 

micro-segments of equal length  along the axial direction. For each segment , 

the acoustic impedance of the air column, , and the equivalent acoustic impedance of the 

flexible shell, , are connected in parallel, where  represents the position of the 

 segment along the shell axis. Detailed derivations of these impedance components under 
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clamped-free boundary condition are provided below. 

 

Fig. S3. Cross-sectional schematic of the cylindrical shell and enclosed air column discretized into n micro 
segments of equal length.  

The pressure at the position  is expressed as: 

  [23] 

where  and  represent the acting force and the lateral surface area of the cylindrical 

shell segment at position , respectively. 

The lateral surface area of the segment at  is constant and given by: 

  [24] 

in which  is the mid-surface area of the cylindrical shell.    

The local equivalent stiffness of the cylindrical shell at position , is defined as: 
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  [25] 

where  is the radial displacement at position , given by: 

  [26] 

Combining Equations (23) to (26), the local equivalent stiffness is obtained as: 

  [27] 

Poisson effect 

When the cylindrical shell undergoes dynamic vibration, neighboring segments experience axial 

inertial constraints, causing the shell deformation mode to approximate a plane strain state ( ). 

This state reflects stiffness enhancement due to the Poisson effect, and thus, the Young’s modulus 

should be adjusted to an equivalent modulus:  

  [28] 

The applicability of this equivalent modulus depends on the excitation frequency: 

1. At high frequency ( ) ： inertial constraints are significant, and the plane strain 

assumption holds, so the equivalent modulus  is appropriate. 

2. At low frequency quasi-static ( )：constraints are negligible, reducing to plane stress 

state ( ), so the equivalent modulus  is appropriate. 

Considering the plane strain correction, the local equivalent stiffness is updated to： 

  [29] 
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The local mechanical resistance at position  is given by:   

  [30] 

The local mass at position  is constant and given by: 

  [31] 

Thus, the local mechanical impedance at position  is: 

  [32] 

The mechanical-acoustic impedance conversion follows (5): 

  [33] 

here  represents the equivalent acoustic impedance of the flexible cylindrical shell for 

each segment. 

Similarly, the acoustic impedance of the air column for each segment is: 

  [34] 

Iterative Calculation of Coupled Acoustic Impedance 

The total equivalent impedance  of the system is calculated recursively using the equivalent 

circuit diagram (Fig. S4).  
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Fig. S4. Equivalent circuit diagram of the discretized impedance model. 

Starting from the nth segment, the equivalent impedance, , is computed as the parallel 

combination of  and , followed by a series connection with : 

  [35] 

For the preceding segments, the recursive relationship is expressed as: 

  [36] 

This iterative process continues until the first segment is reached, at which point the coupling 

impedance between the air column and the shell is fully determined: 

  [37] 

where  represents the equivalent impedance of the coupled air column-shell system. 
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Acoustic Reactance of the Cavity 

The system includes the acoustic reactance of the cavity, expressed as (5): 

  [38] 

where the cavity volume V is given by： 

  [39] 

Total Acoustic Impedance and Sound Absorption 

Finally, the total acoustic impedance of the system is expressed as: 

  [40] 

The sound absorption coefficient is calculated as (2): 

  [41] 

where S is the cross-sectional area of the impedance tube ( ,  being the inner diameter 

of the tube), and  is the characteristic impedance of air. This formula can also be 

conveniently rewritten in terms of the normalized acoustic resistance  and 

normalized acoustic reactance  as (5): 

  [42] 

It follows that when  satisfies  (i.e.,  and ), the sound absorption 

coefficient reaches its maximum value, . 
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2. Closed analytical form when assuming free boundary conditions at both ends 

For a cylindrical shell with free boundary conditions at both ends, the spatial modulation function 

(Eq. 22) becomes . The equivalent stiffness , mechanical resistance , 

and mass  for each segment (Eqs. 29-31) simplify to position-independent constants： 

  [43] 

Substituting Equation (43) into Equations (32) and (33), yields: 

  [44] 

Define the equivalent acoustic impedance  for the entire cylindrical shell as: 

  [45] 

Thus, the equivalent acoustic impedance for each segment becomes: 

  [46] 

The acoustic impedance of air in the neck (Eq. 12) can be rewritten as: 

  [47] 

The acoustic impedance for each segment (Eq. 34) can be re-expressed as: 
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Infinite Ladder Network Model 

The system is modeled as an infinite ladder network (Fig. S5).  

 

Fig. S5. Infinite ladder network model under free boundary conditions at both ends. 

The total impedance is calculated using the following recurrence relation: 

  [49] 

…… 

  [50] 

where the parameters are : 

  [51] 

To facilitate analysis, Equation (50) is reformulated into a standard fractional recurrence form (6): 
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The objective is to determine the limiting value of  as . Since the coefficients ,  

are functions of , we first seek a closed-form expression for  in terms of 	and  before 

evaluating the limit. The solution to the recurrence relation is expressed as a linear fractional 

transformation: 

  [53] 

where the fixed point ,  and attenuation factor  satisfies: 

  [54] 

  [55] 

Solving quadratic Equation (54) yields two roots: 

  [56] 

Substituting Equation (51) into the above yields: 

  [57] 

Then attenuation factor  becomes： 

  [58] 
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As , neglecting infinitesimally small terms, the asymptotic behavior is： 

  [59] 

Substituting these into Equation (53) gives： 

  [60] 

Using the identity , the total impedance simplifies to： 

  [61] 
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3. Comparison of Theoretical Models 

We compare the absorption predictions from the full-recursive model and the closed-form model 

for shell lengths of l = 35 mm (Fig. S6A) and l = 55 mm (Fig. S6B). All other geometrical 

parameters and material properties are held constant (identical to those in Fig. S20). The 

differences between the full-recursive model (clamped-free) and the closed-form analytical model 

(free-free) are minor (Fig. S6A), indicating that the closed-form approach still captures the main 

behavior despite the boundary condition variation. Moreover, this discrepancy diminishes with 

increasing shell length (l = 55 mm, Fig. S6B), as the influence of end constraints becomes less 

significant relative to the overall behavior of the shell. 

 
Figure S6. Comparison of absorption predictions based on the closed-form analytical model (free-free 
boundaries) and full-recursive model (clamped-free boundaries) for shell lengths of (A) l = 35 mm and (B) l = 
55 mm. All other geometrical parameters and material properties are held constant (a = 4 mm, t = 1 mm, R = 
13.9 mm, h = 48.8 mm, E = 148.5 kPa, n = 0.49, rs = 1,070 kg/m³, η = 0.2). 
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4. Viscoelastic Characterization of Silicone Rubber 

To characterize the viscoelastic properties (storage modulus E, and loss factor 𝜂) of silicone rubber 

(Ecoflex-30) used in the FN-Helmholtz resonator, we investigated multiple experimental methods: 

dynamic mechanical analysis (DMA) in compression mode, time-temperature superposition (TTS) 

for high-frequency extrapolation, and the cantilever beam resonance method per ASTM E756-05. 

We compared the results obtained from these testing methods. 

Dynamic Mechanical Analysis (DMA) 

DMA was performed using a TA Instruments DMA 850 analyzer in compression mode (setup 

shown in Fig. S7A). Square samples (dimensions: 18 × 18 × 6 mm³, Fig. S7B) were tested under 

frequency sweeps from 1 Hz to 181 Hz at 10 Hz intervals, with a strain amplitude of 0.5% and at 

a constant temperature of 25°C. The sample dimensions were optimized to minimize data 

fluctuations and instability at higher frequencies. 

Time-Temperature Superposition (TTS) 

To extend the DMA data beyond 181 Hz, we conducted additional experiments using the TTS 

principle (7). The sample was tested over a temperature range from 25°C to -30°C in 5°C intervals. 

At each temperature, frequency sweeps were performed at discrete points: 1 Hz, 10 Hz, 30 Hz, 50 

Hz, 70 Hz, 90 Hz, 110 Hz, 130 Hz, 150 Hz, and 170 Hz. The raw data for storage modulus and 

loss factor versus frequency at different temperatures are shown in Fig. S7C and S7D, respectively. 

The results show that both parameters increase slightly as the temperature decreases. 

Then, the curves can be horizontally shifted to a reference temperature (25°C) according to the 

Williams–Landel–Ferry (WLF) equation (8): 

  [62] 

where  is the shift factor,  is the reference temperature, and empirical constants  and 

 were fitted from the data. 
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Fig. S7. Dynamic Mechanical Analysis (DMA) Setup and Viscoelastic Properties of Ecoflex-30 Silicone Rubber. 
(A) Photograph of the TA Instruments DMA 850 analyzer. (B) Square-shaped sample used for testing 
(dimensions: 18 × 18 × 6 mm³). (C, D) Storage modulus (C) and loss factor (D) versus frequency at temperatures 
from 25°C to -30°C. (E, F) TTS-mastered curves (blue) at 25°C reference temperature, overlaid with direct 
DMA data (25°C, orange): storage modulus (E) and loss factor (F). 

The resulting TTS master curves extend the data up to 596 Hz (Fig. S7E for storage modulus and 

Fig. S7F for loss factor, shown in blue). The direct DMA frequency sweep (< 181 Hz) test results 

at 25℃ (orange) and the extrapolated data (181-596 Hz) are presented together. The storage 

modulus and loss factor show a gradual, albeit fluctuating, increase at higher frequencies. Still, the 
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changes are minimal: for example, storage modulus rises from 152 kPa at 170 Hz to 164 kPa at 

574 Hz, and loss factor increases from 0.191 to 0.208.  

While direct DMA frequency sweeps remain the most straightforward method for assessing 

viscoelastic properties below 181 Hz, TTS provides evaluation for higher frequencies at the cost 

of increased experimental complexity and time. Notably, not all materials are amenable to TTS 

extrapolation due to deviations from thermos-rheological simplicity (9). 

Cantilever Beam Resonance Method 

As an alternative method to assess viscoelastic properties at discrete higher frequencies, we 

investigated the ASTM E756-05 standard (10) using a cantilever beam resonance setup. 

Rectangular beam samples (dimensions: 100 × 6 × 6 mm³, Fig. S8) were clamped at one end and 

excited to measure resonance frequencies and damping. This yielded data only at specific 

resonance modes: 125.1 Hz (first mode), 190 Hz (second mode), and 255 Hz (third mode). The 

results are summarized in Table S1 below, showing that the storage modulus and loss factor exhibit 

limited variation at elevated frequencies. 

 
Fig. S8. Photograph of the test sample used for the cantilever beam resonance method. 

Table S1. Viscoelastic Properties from Cantilever Beam Resonance Method 

Frequency (Hz) 
Storage modulus 

(kPa) 
Loss modulus (kPa) Loss factor 

125.1 132 19 0.1415 
190 136 21 0.1562 
255 138 22 0.1581 
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5. Stability of Sound Absorption Performance 

In this section, we investigated the stability of the FN-Helmholtz resonator's sound absorption 

performance across different environmental and operational conditions.  

Long-term Stability 

We measured the acoustic properties of the FN-Helmholtz resonator (the same sample shown in 

Fig. 5F in the main text) under ambient conditions (25 ° C) at various time points: Day 1 

(immediately after fabrication), Day 60 (60 days after fabrication), and Day 80 (80 days after 

fabrication). As illustrated in Fig. S9, the absorption coefficient, normalized acoustic resistance, 

and normalized acoustic reactance exhibit robust performance over time. The resonator sustains 

high absorption efficiency (𝛼 > 0.96) across its operational bandwidth (231–338 Hz) even after 

80 days. A minor shift in the absorption peaks toward higher frequencies is evident (e.g., the first 

peak shifts from 239 Hz to 243 Hz), which can be attributed to the natural aging of the silicone 

rubber. Importantly, this shift tends to stabilize after the initial period, as demonstrated by the 

nearly identical curves recorded on Day 60 and Day 80. For applications that demand exceptional 

long-term stability, strategies such as material modifications or process optimizations could be 

implemented to further mitigate these aging effects. 

 
Fig. S9. Long-term stability of the FN-Helmholtz resonator. Absorption coefficient, normalized acoustic 
resistance, and acoustic reactance measured on Day 1, Day 60, and Day 80. 
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Temperature Effects on Sound Absorption Performance 

Temperature variations may affect the viscoelastic properties of Ecoflex-30, potentially 

influencing the sound absorption performance of the FN-Helmholtz resonator. From the TTS raw 

data (Figs. S7C and S7D), decreasing temperature increases both storage modulus E and loss 

factor η (e.g., E rises from 152 kPa at 25°C to 169 kPa at -10°C; η rises from 0.19 to 0.22). To 

quantify the temperature effect, we conducted coupled acoustic-structural simulations in 

COMSOL Multiphysics using viscoelastic parameters at two representative temperature: 25°C  

and -10°C, with identical geometry to that in Fig. 2A (also shown in Fig. S19). 

The simulated normal-incidence absorption spectra (Fig. S10) show minor shifts: the first peak 

frequency moves from 327 Hz at 25°C to 334 Hz at -10°C, while the overall broadband profile 

remains largely preserved. These results indicate that the FN-Helmholtz resonator maintains 

relatively stable broadband absorption performance across a wide temperature range. 

 
Fig. S10. Simulated sound absorption coefficients of the FN-Helmholtz resonator using viscoelastic parameters 
at 25°C (E = 152 kPa, η = 0.19; black curve) and -10°C (E = 169 kPa, η = 0.22; red curve). 
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Absorption Under Oblique Incidence 

To extend the model’s applicability to realistic scenarios involving non-normal incidence, we 

further consider oblique incidence at angle 𝜃  (measured from the normal to the surface). 

Assuming the surface is locally reacting, i.e., the acoustic impedance is independent of the angle 

of incidence, which is a valid approximation for resonant absorbers (11), the absorption coefficient 

𝛼(𝜃) is calculated by modifying the formula (Eq. 41) to account for the effective impedance 

projection along the direction of propagation: 

  [63] 

Using the full recursive model, we calculated the absorption spectra for representative incidence 

angles of 0°, 30°, and 60°. The calculations utilized geometric and material parameters identical 

to that in Fig. S20. As shown in Fig. S11, the absorption spectra vary with incidence angle, 

exhibiting differences across frequency bands. For instance, a reduction in absorption in the first 

peak at higher angles, accompanied by an increase in mid-frequency regions. These variations 

arise from changes in impedance matching between the absorber and the incident wave as a 

function of angle. 

 
Fig. S11. Sound absorption spectra under different incidence angles (0°, 30°, 60°). 
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Absorption Under High Sound Pressure 

To evaluate potential influences of material nonlinearity at elevated incident sound levels, the 

normal-incidence sound absorption coefficient of the FN-Helmholtz resonator (configuration as 

shown in Fig. 2A) was measured under white-noise excitation at various source levels: 90 dB 

(0.632 Pa), 100 dB (2 Pa), 110 dB (6.32 Pa), 120 dB (20 Pa), and 129 dB (56.2 Pa, the maximum 

output achievable by the impedance tube speaker), with the experimental setup shown in Fig. S14. 

The measured absorption curves are shown in Fig. S12.  

 
Fig. S12. Sound absorption spectra under various incident sound pressure levels. 

All curves are nearly identical across this range of incident sound pressures, which indicates that 

the absorber operates linearly even at high excitation levels. We note that the curve at 90 dB 

appears slightly less smooth, which is attributed to a lower signal-to-noise ratio at this pressure 

level. Similarly, minor fluctuations are observed at high frequencies under 129 dB excitation, 

likely due to distortion or limitations of the acoustic source at its maximum output. 

To quantitatively assess structural linearity, we performed finite element simulations in COMSOL 

Multiphysics (detailed in Fig. S19) to extract the maximum radial displacement and principal 

strain of the soft cylindrical shell under these incident sound pressures. The results are summarized 

in Table S2 below: 
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Table S2. Simulated maximal displacement and strain of the soft shell under different sound pressure. 

Sound pressure (Pa) dB Maximal displacement (mm) Maximal strain 

0.632 90 0.0005 0.016% 

2 100 0.0017 0.051% 

6.32 110 0.0052 0.162% 

20 120 0.0165 0.511% 

56.2 129 0.0464 1.440% 

Even at the highest excitation level of 129 dB (56.2 Pa), the principal strain is only 1.44%. These 

values are well within the linear elastic regime of Ecoflex-30 silicone rubber, which has been 

reported to exhibit linear stress-strain behavior up to approximately 10% strain (12). Therefore, 

we conclude that the structural response of the soft shell is expected to remain linear at significantly 

high sound pressure levels, such as 129 dB. These results support the validity of the linear model 

used in our study. Potential acoustic nonlinearities in the air medium at even higher sound pressures 

were not explored in this study. 
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Fig. S13. Fabrication process of the FN-Helmholtz resonator. (A) CNC-machined aluminum alloy molds used 
for silicone casting, labeled as Mold A (left) and Mold B (right). Mold A contains a larger cylindrical cavity 
(inner diameter: 10  mm) with a sealed bottom (taped), while Mold B includes a central cylindrical pillar 
(diameter: 8 mm) and four peripheral through-holes for excess silicone precursor drainage. Mold A and Mold B 
have the same outer diameter. (B) Silicone precursor was injected into Mold A, and Mold B was inserted into 
the cylindrical cavity. The taped bottom prevented precursor leakage from the bottom. This created an annular 
gap filled with silicone precursor. Excess precursor drained through the four peripheral through-holes of Mold 
B. (C) Inverted view of the assembled molds, clearly showing the annual gap formed between the molds. (D) A 
positioning ring was nested around the outer surfaces of both molds to ensure accurate coaxial alignment 
throughout the mold length. (E) After 4 hours of curing, the molds were disassembled, and the silicone shell was 
demolded and trimmed to its final dimensions, with deviations below 0.05 mm from the mold design. (F) Final 
assembly of the FN-Helmholtz resonator, with the flexible shell integrated into the outer structure. For 
illustration, the outer shell is rendered as transparent acrylic; the actual test sample used opaque 3D-printed resin 
shell. Note: white scale bar = 10 mm in all panels. 
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Fig. S14. Experimental setup for sound absorption measurements and assessment of sample orientation effects. 
(A) Photograph of the horizontally oriented acoustic impedance tube (AWA6290T, Hangzhou Aihua Instruments 
Co., Ltd.) with an inner diameter of D  =  29  mm. Measurements are conducted according to ISO 10534-2, 
utilizing broadband white noise excitation (50–6300 Hz, 110 dB SPL) and capturing acoustic signals with two 
microphones. Sound absorption coefficients were calculated using the transfer function method. (B) Photograph 
showing slight gravitational sagging of the flexible cylindrical shell due to its low stiffness in the horizontal 
position (white scale bar = 10 mm). (C) Photograph of the vertical setup, eliminating gravitational sagging. (D) 
Comparison of sound absorption coefficients for horizontal and vertical orientations, showing nearly identical 
results and confirming that sagging has negligible influence on acoustic performance under the tested sample 
conditions. The sample was made from Ecoflex-30 (Young’s modulus ≈ 90 kPa; see Fig. 2B).  
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Fig. S15. Experimental setup and results for vibrational displacement of the silicone rubber cylindrical shell. (A) 
Photograph of the measurement setup, including a Polytec PSV-500 laser Doppler vibrometer, an acoustic 
impedance tube with a speaker as the sound source, and the tested sample mounted via a 3D-printed extension 
adapter. (B) Sample enclosed in a transparent acrylic shell designed for unobstructed laser access, with a 
rectangular cavity to minimize laser reflection artifacts. The internal volume of the rectangular cavity matches 
that of the cylindrical cavity in Fig. 2A. One end of the sample is designed to rotate to fixed angular positions, 
enabling scanning along different axial lines. Blue line indicates scanning axial scanning paths, with a spatial 
resolution of 0.2 mm. The true clamped end (l = 0 mm) is obscured by the fixture. Scanning starts at l = 2.5 mm 
(corresponding to x = 0) and ends at l = 36.5 mm (x = 34 mm), covering a distance of 34 mm axially. (C) 
Schematic showing the three circumferential positions (0°, 120°, and 240°) of the scanning lines. (D, E) 
Measured displacement amplitudes under (D) 330 Hz and (E) 500 Hz acoustic excitation along the three 
scanning lines. Blue curve shows the averaged amplitude profile. (F, G) Measured phase distributions of radial 
displacement at (F) 330 Hz and (G) 500 Hz across the three lines, referenced to the speaker input signal and 
normalized to zero phase at the scanning start point (x = 0). Blue curve shows the average phase profile.  
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Fig. S16. Structural and simulation details of the RN-Helmholtz resonator model corresponding to Fig. 1A. (A) 
Cross-sectional schematic of the resonator. The cylindrical neck has a radius of a  =  1.7  mm, wall thickness t  = 
 1  mm, and length l  =  37  mm, with a 1.5 mm segment (l1) anchored to the outer shell. The cavity is enclosed 
by an outer cylindrical shell with radius R  =  14.5  mm, thickness t1  =  1  mm, and total height h  =  52  mm. 
Both the cylinder neck and outer shell are modeled with a Young’s modulus of E = 2,650 MPa, Poisson’s ratio n 
= 0.4, density rs = 1,120 kg/m³, and loss factor η = 0.01. (B) Physical domain assignment used in the coupled 
acoustic–structure simulation in COMSOL Multiphysics. PML stands for perfectly matched layer. (C) Finite 
element mesh of the RN-Helmholtz resonator model. The domain is discretized using hexahedral elements, with 
locally refined boundary layers in the thermo-viscous acoustics region. (D) Simulated sound absorption 
coefficient. The RN-Helmholtz resonator exhibits a narrow absorption peak of 0.999 at 150 Hz, with an effective 
bandwidth (a > 0.8) spanning only 18 Hz, from 141 to 159 Hz.  
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Fig. S17. Structural and simulation details of the Multiple RN-Helmholtz resonators model corresponding to Fig. 
1E. (A) Schematic of the absorber integrating five resonators. The sample has a total height h = 52 mm and outer 
radius R =  14.5 mm. Each resonator contains a rigid neck of equal length (l = 29 mm) and wall thickness (t = 1 
mm). The inner radii of the different tubes are: 3.35 mm for neck 1, 3.2 mm for neck 2, 3.1 mm for necks 3 and 
4, and 2.95 mm for neck 5. Material properties are identical to those in Fig. S16. (B) Top view schematic of the 
resonators. The thickness of the partition walls between cavities is tw = 1 mm. All cavities have the same height 
of 49 mm (excluding 3 mm top and bottom plates), but vary in cross-sectional area: 171 mm² (Cavity 1), 
120.6 mm² (Cavity 2), 88 mm² (Cavity 3), 70.6 mm² (Cavity 4), and 56.2 mm² (Cavity 5). (C) Finite element 
mesh in COMSOL Multiphysics using hexahedral elements, with refined thermos-viscous boundary layers. (D) 
Simulated sound absorption coefficient of the coupled system shows broadband absorption (300-510 Hz, a > 
0.8) with peaks at 315 Hz (0.971), 360 Hz (0.975), 410 Hz (0.960), 460 Hz (0.952), and 495 Hz (0.841). For 
comparison, the absorption spectra for individual resonators are also shown: Unit 1 (purple dashed line, 313 Hz 
peak, 0.976), Unit 2 (orange, 359 Hz, 0.932), Unit 3 (gray, 412 Hz, 0.890), Unit 4 (blue, 368 Hz, 0.856), and 
Unit 5 (green, 508 Hz, 0.769). 
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Fig. S18. Structural and simulation details of the FN-Helmholtz resonator model corresponding to Fig. 1F. (A) 
Cross-sectional schematic of the resonator. The design features a flexible cylindrical neck with radius a  =  3.87 
 mm, wall thickness t  =  1  mm, and length l  =  37  mm, with a 1.5  mm segment (l1) anchored to the outer shell. 
The outer shell has a radius R  =  14.5  mm, thickness t1  =  1  mm, and height h  =  52  mm. The flexible neck is 
modeled as a viscoelastic material with Young’s modulus E = 120 kPa, Poisson’s ratio n = 0.49, density rs = 
1,120 kg/m³, and loss factor h =  0.4. The material parameters of the outer shell are identical to those in Fig. S16. 
(B) Finite element mesh in COMSOL Multiphysics using hexahedral elements, with refined thermos-viscous 
boundary layers. (C) Simulated sound absorption coefficient of the FN-Helmholtz resonator shows two 
prominent absorption peaks at 320 Hz (0.974) and 460 Hz (0.967), resulting in a broadband absorption region 
where a > 0.8 over a 215 Hz range (294–509 Hz), more than 10 times higher than that in the RN-Helmholtz 
resonator shown in Fig. S16D.  
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Fig. S19. Simulation model of the FN-Helmholtz resonator corresponding to Fig. 2A and comparison between 
simulation and experimental results. (A) Cross-sectional schematic of the resonator. The flexible cylindrical neck 
has a radius a  =  4  mm, wall thickness t  =  1  mm, and length l  =  36.5  mm, with a segment (l1  =  1.5  mm) 
anchored to the outer shell. The outer shell has a radius R  =  14.5  mm, wall thickness t1  =  0.6  mm, and total 
height h  =  51.5  mm. The neck material is modeled with Young’s modulus E = 148.5 kPa, Poisson’s ratio n = 
0.49, density rs = 1,070 kg/m³, and loss factor η = 0.2. (B) Physical domain assignment used in the coupled 
acoustic–structure simulation in COMSOL Multiphysics. A background pressure field of 1 Pa is applied in the 
pressure acoustic domain as the sound source. PML stands for perfectly matched layer. (C) Finite element mesh 
in COMSOL Multiphysics using hexahedral elements, with refined thermos-viscous boundary layers. (D-F) 
Comparison of simulation and experimental results: (D) sound absorption coefficient, (E) normalized acoustic 
resistance, and (F) normalized acoustic reactance, all demonstrating close to excellent agreement. 
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Fig. S20. Simulation model (corresponding to Fig. 3) for validation against analytical solution. (A) Cross-
sectional schematic of the model geometry. The cavity has a height h = 48.8 mm and radius R = 13.9 mm. The 
cylindrical shell has a radius a = 4 mm, thickness t = 1 mm, and length l = 35 mm. The cylindrical shell material 
is modeled with a Young’s modulus E = 148.5 kPa, Poisson’s ratio n = 0.49, density rs = 1,070 kg/m³, and loss 
factor η = 0.2. (B) Physical domain assignment in the COMSOL Multiphysics acoustic-structural simulation 
model. (C) Finite element mesh in COMSOL Multiphysics using hexahedral elements, with refined thermos-
viscous boundary layers.  
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Fig. S21. Experimentally measured and simulated acoustic properties for three resonator sets. (A-C) Set 1 
(Ecoflex-20; a = 4 mm, l = 41.5 mm, t = 1 mm, h = 63 mm), showing (A) absorption coefficient, (B) normalized 
acoustic resistance, and (C) normalized acoustic reactance. (D-F) Set 2 (Ecoflex-0020 + W; a = 4 mm, l = 41.5 
mm, t = 1 mm, h = 72 mm), showing (D) absorption coefficient, (E) normalized acoustic resistance, and (F) 
normalized acoustic reactance. (G-I) Set 3 (Ecoflex-0020 + W; a = 4.5 mm, l = 50 mm, t = 1.5 mm, h = 100 
mm), showing (G) absorption coefficient, (H) normalized acoustic resistance, and (I) normalized acoustic 
reactance. 
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