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Supporting Information Text18

1. Constitutive Model Implementation.19

Basic Kinematics. A lipid monolayer is assumed to be a continuum body. Consider an arbitrary material particle in the reference20

configuration B0 of the continuum body at the reference time t = 0. The position of the particle is characterized by its position21

vector X. This particle transforms to a position x in the current configuration B at time t following the motion χ(X, t). The22

deformation gradient tensor is defined as F := ∂x/∂X. The determinant of F is denoted by J := detF > 0. The right and left23

Cauchy–Green deformation tensors are introduced as C := FT F and B := FFT , respectively. The spatial velocity gradient24

tensor is given as L := FF−1, with (•̇) the material time derivative of a quantity (•). F is split into an isochoric part J1/3I and25

a volumetric part F, i.e., F = J1/3F, where I is the 2nd-order identity tensor, and F is the modified deformation gradient26

tensor. Thus, the modified right and left Cauchy–Green deformation tensors are correspondingly introduced as C:=FT F and27

B:=FFT , respectively.28

Constitutive Relations. The Helmholtz free energy density function ψ is assumed to exist, which is defined per unit reference29

volume. Within the large deformation framework, the free energy density is assumed to be a function of the right Cauchy–Green30

deformation tensor, i.e., ψ = ψ̂(C). In this work, we focus on the experimental state where a lipid monolayer exhibits the solid31

phase, where the monolayer shows quasi-incompressible characteristics. To separately describe the isochoric and volumetric32

contributions, the free energy density ψ is decomposed into two parts, i.e.,33

ψ = ψiso + ψvol,with ψiso = ψ̂iso(C̄) and ψvol = ψ̂vol(J), [1]34

35

where C and J can be expressed as functions of C, i.e., C = J−2/3C and J = (detC)1/2, respectively.36

Under the isothermal conditions, the Clausius–Planck inequality is expressed as37

Dint = S · Ċ
2 − ψ̇ =

(
S − 2 ∂ψ

∂C

)
· Ċ

2 ≥ 0, [2]38

39

where (•) · (•) denotes a double contraction, S represents the second Piola–Kirchhoff stress tensor, and Dint is the non-negative40

internal dissipation. Since C can be chosen arbitrarily, to fulfill the inequality, one has41

S = 2 ∂ψ
∂C . [3]42

43

The Cauchy stress σ can be calculated as44

σ = 1
J

FSFT = 2
J

F ∂ψ

∂CFT . [4]45

46

Constitutive Relation in Simple Shear. For describing the shear banding of monolayers, a new invariant is defined to measure the47

amount of shear strain in simple shear (see (1) for more details), i.e.,48

γS
2 = I1 − 3. [5]49

50

The free energy density can be rewritten as a function of γ and J , i.e., ψ = ψ̂(γ, J). The shear stress in simple shear is51

calculated as52

τ = ∂ψ

∂γ
= ∂ψ

∂Ī1

∂Ī1

∂γ
= 2γ ∂ψ

∂Ī1
. [6]53

54

2. Tunability of Non-Monotonic Material Model. Taking the model described in the Methods, the shear stress-strain relationship55

in simple shear can be calculated through Eq S6 (where τ(γ) is stress in simple shear as a function of γS , the amount of shear56

strain in simple shear), which can be derived as57

τ(γS) = 2γS
∂ψ

∂I1
= 2γ

[
C1

1 + C2γS
2 − C1C2γS

2

(1 + C2γS
2)2 + 2C3γS

2
]
, [7]58

59
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We have chosen three parameter sets to act as typical cases for this model (Case 1: C1 = 1, C2 = 5, C3 = 0.5; Case 2: C1 = 1,60

C2 = 5, C3 = 0.1; Case 3: C1 = 1, C2 = 10, C3 = 0.001) as well as a neo-Hookean case (C1 = 1, C2 = 0, C3 = 0), results for all61

of which are shown in Fig. 3. These cases were chosen to best showcase the range of behavior this model can capture. In62

Cases 2 and 3, there are inflection points where the shear stress-strain relationship in simple shear changes sign, giving a local63

maximum that is not given in Case 1 or the neo-Hookean case. Cases 2 and 3 differ in their critical shear strain value and in64

the extent of their relaxation regimes. Specifically, the second elastic regime is not exhibited within the given strain range for65

Case 3.66

3. Comparison of Analytical and Numerical Loss of Ellipticity. The results of the loss of ellipticity calculation from Eq 6 for67

all typical cases with a γS,C are shown in the subplots of Fig. 3. The λN,C values for Case 2 and Case 3 are 0.874 and68

0.914, respectively. Using the homogeneous FE model built with the constitutive equation as described in the Methods, we69

characterize the effective behavior of the material through recording reaction force on the left boundary as a function of70

nominal stretch, λN . The point where the reaction force drops is the critical nominal stretch, or λN,C . As shown in Fig. 3, this71

computational critical point agrees with the analytical onset of relaxation, suggesting the constitutive model can accurately72

capture the deformation of the matrix with different material properties. For the parameter sets that do not analytically73

provide a relaxation point, such as Case 1 and neo-Hookean, the results show no drop in reaction force, showcasing the ability74

for the analytical solution to differentiate between relaxation and no relaxation.75
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Fig. S1. Depiction of tunability and 3-regime form of shear banding material model. A) The shear stress-strain relationship in the case of simple shear is plotted for 7 different
parameter sets to showcase the tunability of the chosen constitutive model, using Eq S7. C1 (blue) is shown to alter the slope of the first elastic regime. C2 (yellow) is shown to
alter the critical shear strain or point of relaxation. C3 (red) is shown to alter the slope of the second elastic regime. B) The shear stress-strain relationship in the case of simple
shear is plotted for a representative parameter set to showcase the 3-regime form of the model when it is non-monotonic. The first region (blue) is considered the first elastic
regime. The second region (yellow) is considered the relaxation regime, the presence of which allows for shear banding to take place. The third region (red) is considered the
second elastic regime. When a parameter set creates a monotonic relationship, there is no relaxation regime.
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Fig. S2. Validation against additional lipid monolayer compositions. A) Evolution of representative local condensed domain organization captured by FM for monolayers that
lose stability via folding (left, DPPC:GM1 8:2) and relaxing in-plane (right, DPPC:GM1 5:5) (further compositional details found in Method section) under increasing lateral
compression, as previously published (2), with the associated 2D image autocorrelation to the right. These autocorrelations again show that for folding lipid monolayers, powder
structure is maintained, while for in-plane relaxing monolayers, this powder structure is broken. B) Finite element resultant domain organization for an initial geometry of a
folding monolayer (left, DPPC:GM1 8:2) and monolayer that relaxes in-plane (right, DPPC:GM1 5:5). For both models, Case 1 (no shear banding) shows maintained powder
structure at high compression and Case 3 (strong shear banding) shows similar domain organization to that observed in in-plane relaxing monolayers. Red boxes enclose
where the resultant FE model domain organization in B matches the experimental data in A. C) Representative field distributions of shear strain for resultant FE models shown
in B. Significantly less localized shear strains are seen in models implementing a monotonic shear stress-strain response (Case 1), while strong shear bands form in the matrix
for the non-monotonic shear stress-strain response, promoting condensed domain reorganization (Case 3).
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Movie S1. The field distributions of shear strain (SDV), calculated using Eq S5, in the computational model76

where the matrix has the parameters of Case 1 (no shear banding), with strain limits adjusted to each frame,77

as shown in the legend.78

Movie S2. The field distributions of shear strain (SDV), calculated using Eq S5, in the computational model79

where the matrix has the parameters of Case 2 (weak shear banding), with strain limits adjusted to each80

frame, as shown in the legend.81

Movie S3. The field distributions of shear strain (SDV), calculated using Eq S5, in the computational model82

where the matrix has the parameters of Case 3 (strong shear banding), with strain limits adjusted to each83

frame, as shown in the legend.84
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